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If we multiply by this equation of motion by grk and note that gik,`uiu` =
g`k,iuiu`, then we find
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So using the symmetry gi` = g`i and the formula (11.255) for �r
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which is the geodesic equation. In empty space, particles fall along geodesics
independently of their masses.

The right-hand side of the geodesic equation (11.324) is a contravariant
vector because (Weinberg, 1972) under general coordinate transformations,
the inhomogeneous terms arising from ẍr cancel those from �r

i`ẋ
iẋ`. Here

and often in what follows we’ll use dots to mean proper-time derivatives.
The action for a particle of mass m and charge q in a gravitational field
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because the interaction q
R
Aidxi is invariant under general coordinate trans-

formations. By (11.315 & 11.321), the first-order change in S is
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and so by combining the Lorentz force law (11.316) and the geodesic equation
(11.324) and by writing F riẋi as F r

i ẋ
i, we have
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as the equation of motion of a particle of mass m and change q. It is striking
how nearly perfect the electromagnetism of Faraday and Maxwell is.

The action of the electromagnetic field interacting with an electric current
jk in a gravitational field is
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in which
p
g d4x is the invariant volume element. After an integration by

parts, the first-order change in the action is
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and so the inhomogeneous Maxwell equations in a gravitational field are
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11.39 The Principle of Equivalence

The principle of equivalence says that in any gravitational field, one
may choose free-fall coordinates in which all physical laws take the same
form as in special relativity without acceleration or gravitation—at least
over a suitably small volume of space-time. Within this volume and in these
coordinates, things behave as they would at rest deep in empty space far
from any matter or energy. The volume must be small enough so that the
gravitational field is constant throughout it.

Example 11.21 (Elevators) When a modern elevator starts going down
from a high floor, it accelerates downward at something less than the local
acceleration of gravity. One feels less pressure on one’s feet; one feels lighter.
(This is as close to free fall as I like to get.) After accelerating downward for a
few seconds, the elevator assumes a constant downward speed, and then one
feels the normal pressure of one’s weight on one’s feet. The elevator seems
to be slowing down for a stop, but actually it has just stopped accelerating
downward.
If in those first few seconds the elevator really were falling, then the physics

in it would be the same as if it were at rest in empty space far from any
gravitational field. A clock in it would tick as fast as it would at rest in the
absence of gravity.

The transformation from arbitrary coordinates xk to free-fall coordinates
yi changes the metric gj` to the diagonal metric ⌘ik of flat space-time
⌘ = diag(�1, 1, 1, 1), which has two indices and is not a Levi-Civita ten-
sor. Algebraically, this transformation is a congruence (1.308)
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The geodesic equation (11.324) follows from the principle of equiva-
lence (Weinberg, 1972; Hobson et al., 2006). Suppose a particle is moving
under the influence of gravitation alone. Then one may choose free-fall co-
ordinates y(x) so that the particle obeys the force-free equation of motion


