How weak are the static gravitational fields we know about? The dimensionless ratio $\phi / c^{2}$ is $10^{-39}$ on the surface of a proton, $10^{-9}$ on the Earth, $10^{-6}$ on the surface of the sun, and $10^{-4}$ on the surface of a white dwarf.

### 11.41 Gravitational Time Dilation

Suppose we have a system of coordinates $x^{i}$ with a metric $g_{i k}$ and a clock at rest in this system. Then the proper time $d \tau$ between ticks of the clock is

$$
\begin{equation*}
d \tau=(1 / c) \sqrt{-g_{i j} d x^{i} d x^{j}}=\sqrt{-g_{00}} d t \tag{11.340}
\end{equation*}
$$

where $d t$ is the time between ticks in the $x^{i}$ coordinates, which is the laboratory frame in the gravitational field $g_{00}$. By the principle of equivalence (section 11.39), the proper time $d \tau$ between ticks is the same as the time between ticks when the same clock is at rest deep in empty space.

If the clock is in a weak static gravitational field due to a mass $M$ at a distance $r$, then

$$
\begin{equation*}
-g_{00}=1+2 \phi / c^{2}=1-2 G M / c^{2} r \tag{11.341}
\end{equation*}
$$

is a little less than unity, and the interval of proper time between ticks

$$
\begin{equation*}
d \tau=\sqrt{-g_{00}} d t=\sqrt{1-2 G M / c^{2} r} d t \tag{11.342}
\end{equation*}
$$

is slightly less than the interval $d t$ between ticks in the coordinate system of an observer at $x$ in the rest frame of the clock and the mass, and in its gravitational field. Since $d t>d \tau$, the laboratory time $d t$ between ticks is greater than the proper or intrinsic time $d \tau$ between ticks of the clock unaffected by any gravitational field. Clocks near big masses run slow.

Now suppose we have two identical clocks in at different heights above sea level. The time $T_{\ell}$ for the lower clock to make $N$ ticks will be longer than the time $T_{u}$ for the upper clock to make $N$ ticks. The ratio of the clock times will be

$$
\begin{equation*}
\frac{T_{\ell}}{T_{u}}=\frac{\sqrt{1-2 G M / c^{2}(r+h)}}{\sqrt{1-2 G M / c^{2} r}} \approx 1+\frac{g h}{c^{2}} \tag{11.343}
\end{equation*}
$$

Now imagine that a photon going down passes the upper clock which measures its frequency as $\nu_{u}$ and then passes the lower clock which measures its frequency as $\nu_{\ell}$. The slower clock will measure a higher frequency. The ratio of the two frequencies will be the same as the ratio of the clock times

$$
\begin{equation*}
\frac{\nu_{\ell}}{\nu_{u}}=1+\frac{g h}{c^{2}} \tag{11.344}
\end{equation*}
$$

As measured by the lower, slower clock, the photon is blue shifted.

