Since the vectors e_{i} are orthogonal, the metric is diagonal

$$
\begin{equation*}
g_{i j}=e_{i} \cdot e_{j}=h_{i}^{2} \delta_{i j} \tag{11.154}
\end{equation*}
$$

The inverse metric

$$
\begin{equation*}
g^{i j}=h_{i}^{-2} \delta_{i j} \tag{11.155}
\end{equation*}
$$

raises indices. For instance, the dual vectors

$$
\begin{equation*}
e^{i}=g^{i j} e_{j}=h_{i}^{-2} e_{i} \quad \text { satisfy } \quad e^{i} \cdot e_{k}=\delta_{k}^{i} \tag{11.156}
\end{equation*}
$$

The invariant squared distance $d p^{2}$ between nearby points (11.143) is

$$
\begin{equation*}
d p^{2}=d p \cdot d p=g_{i j} d x^{i} d x^{j}=h_{i}^{2}\left(d x^{i}\right)^{2} \tag{11.157}
\end{equation*}
$$

and the invariant volume element is

$$
\begin{equation*}
d V=d^{n} p=h_{1} \ldots h_{n} d x^{1} \wedge \ldots \wedge d x^{n}=g d x^{1} \wedge \ldots \wedge d x^{n}=g d^{n} x \tag{11.158}
\end{equation*}
$$

in which $g=\sqrt{\operatorname{det} g_{i j}}$ is the square-root of the positive determinant of $g_{i j}$.
The important special case in which all the scale factors h_{i} are unity is cartesian coordinates in euclidean space (section 11.5).

We also can use basis vectors \hat{e}_{i} that are orthonormal. By (11.154 \& 11.156), these vectors

$$
\begin{equation*}
\hat{e}_{i}=e_{i} / h_{i}=h_{i} e^{i} \quad \text { satisfy } \quad \hat{e}_{i} \cdot \hat{e}_{j}=\delta_{i j} \tag{11.159}
\end{equation*}
$$

In terms of them, a physical and invariant vector V takes the form

$$
\begin{equation*}
V=e_{i} V^{i}=h_{i} \hat{e}_{i} V^{i}=e^{i} V_{i}=h_{i}^{-1} \hat{e}_{i} V_{i}=\hat{e}_{i} \bar{V}_{i} \tag{11.160}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{V}_{i} \equiv h_{i} V^{i}=h_{i}^{-1} V_{i} \quad(\text { no sum }) \tag{11.161}
\end{equation*}
$$

The dot-product is then

$$
\begin{equation*}
V \cdot U=g_{i j} V^{i} U^{j}=\bar{V}_{i} \bar{U}_{i} \tag{11.162}
\end{equation*}
$$

In euclidian n-space, we even can choose coordinates x^{i} so that the vectors e_{i} defined by $d p=e_{i} d x^{i}$ are orthonormal. The metric tensor is then the $n \times n$ identity matrix $g_{i k}=e_{i} \cdot e_{k}=I_{i k}=\delta_{i k}$. But since this is euclidian n-space, we also can expand the n fixed orthonormal cartesian unit vectors $\hat{\ell}$ in terms of the $e_{i}(x)$ which vary with the coordinates as $\hat{\ell}=e_{i}(x)\left(e_{i}(x) \cdot \hat{\ell}\right)$.

