Example 11.14 (Exterior Derivatives Anticommute with Differentials) The exterior derivative acting on two one-forms $A=A_{i} d x^{i}$ and $B=B_{j} d x^{j}$ is

$$
\begin{aligned}
d(A \wedge B) & =d\left(A_{i} d x^{i} \wedge B_{j} d x^{j}\right)=\partial_{k}\left(A_{i} B_{j}\right) d x^{k} \wedge d x^{i} \wedge d x^{j} \\
& =\left(\partial_{k} A_{i}\right) B_{j} d x^{k} \wedge d x^{i} \wedge d x^{j}+A_{i}\left(\partial_{k} B_{j}\right) d x^{k} \wedge d x^{i} \wedge d x^{j} \\
& =\left(\partial_{k} A_{i}\right) B_{j} d x^{k} \wedge d x^{i} \wedge d x^{j}-A_{i}\left(\partial_{k} B_{j}\right) d x^{i} \wedge d x^{k} \wedge d x^{j} \\
& =\left(\partial_{k} A_{i}\right) d x^{k} \wedge d x^{i} \wedge B_{j} d x^{j}-A_{i} d x^{i} \wedge\left(\partial_{k} B_{j}\right) d x^{k} \wedge d x^{j} \\
& =d A \wedge B-A \wedge d B .
\end{aligned}
$$

If A is a p-form, then $d(A \wedge B)=d A \wedge B+(-1)^{p} A \wedge d B$ (exercise 11.10).

11.14 Tensor Equations

Maxwell's homogeneous equations (11.93) relate the derivatives of the fieldstrength tensor to each other as

$$
\begin{equation*}
0=\partial_{i} F_{j k}+\partial_{k} F_{i j}+\partial_{j} F_{k i} . \tag{11.122}
\end{equation*}
$$

They are generally covariant tensor equations (sections $11.31 \& 11.32$). In terms of invariant forms, they are the Bianchi identity (11.114)

$$
\begin{equation*}
d F=d d A=0 \tag{11.123}
\end{equation*}
$$

Maxwell's inhomegneous equations (11.94) relate the derivatives of the fieldstrength tensor to the current density j^{i} and to the square-root of the modulus g of the determinant of the metric tensor $g_{i j}$ (section 11.16)

$$
\begin{equation*}
\frac{\partial\left(\sqrt{g} F^{i k}\right)}{\partial x^{k}}=\mu_{0} \sqrt{g} j^{i} \tag{11.124}
\end{equation*}
$$

We'll write them as invariant forms in section 11.26 and derive them from an action principle in section 11.38.

If we can write a physical law in one coordinate system as a tensor equation

$$
\begin{equation*}
K^{k l}=0 \tag{11.125}
\end{equation*}
$$

then in any other coordinate system, the corresponding tensor equation

$$
\begin{equation*}
K^{\prime i j}=0 \tag{11.126}
\end{equation*}
$$

also is valid since

$$
\begin{equation*}
K^{\prime i j}=\frac{\partial x^{\prime i}}{\partial x^{k}} \frac{\partial x^{\prime j}}{\partial x^{l}} K^{k l}=0 . \tag{11.127}
\end{equation*}
$$

