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is the 2-form

dA = @yAx dy ^ dx+ @zAx dz ^ dx

+ @xAy dx ^ dy + @zAy dz ^ dy

+ @xAz dx ^ dz + @yAz dy ^ dz

= (@yAz � @zAy) dy ^ dz (11.111)

+ (@zAx � @xAz) dz ^ dx

+ (@xAy � @yAx) dx ^ dy

= (r⇥A)x dy ^ dz + (r⇥A)y dz ^ dx+ (r⇥A)z dx ^ dy

in which we recognize the curl (6.39) of A.

The exterior derivative of the 1-form A = Aj dxj is the 2-form

dA = dAj ^ dxj = @iAj dx
i ^ dxj = 1

2

Fij dx
i ^ dxj = F (11.112)

in which @i = @/@xi. So d turns the electromagnetic 1-form A—the 4-vector
potential or gauge field Aj—into the Faraday 2-form—the tensor Fij . Its
square dd vanishes: dd applied to any p-form Q is zero

ddQi...dx
i^· · · = d(@rQi...)^dxr^dxi^· · · = (@s@rQi...)dx

s^dxr^dxi^· · · = 0
(11.113)

because @s@rQ is symmetric in r and s while dxs ^ dxr is anti-symmetric.
Some writers drop the wedges and write dxi^dxj as dxidxj while keeping

the rules of antisymmetry dxidxj = �dxjdxi and
�
dxi

�
2

= 0. But this econ-
omy prevents one from using invariant quantities like S = 1

2

Sik dxidxk in
which Sik is a second-rank covariant symmetric tensor. If Mik is a covariant
second-rank tensor with no particular symmetry, then (exercise 11.7) only
its antisymmetric part contributes to the 2-form Mik dxi ^ dxk and only its
symmetric part contributes to the quantity Mik dxidxk.
The exterior derivative d applied to the Faraday 2-form F = dA gives

dF = ddA = 0 (11.114)

which is the Bianchi identity (11.93). A p-form H is closed if dH = 0. By
(11.114), the Faraday 2-form is closed, dF = 0.
A p-form H is exact if there is a (p � 1)-form K whose di↵erential is

H = dK. The identity (11.113) or dd = 0 implies that every exact form
is closed. The lemma of Poincaré shows that every closed form is locally
exact.
If the Ai in the 1-form A = Aidxi commute with each other, then the

2-form A ^ A = 0. But if the Ai don’t commute because they are matrices
or operators or Grassmann variables, then A ^A need not vanish.
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Example 11.12 (A Static Electric Field Is Closed and Locally Exact) If
Ḃ = 0, then by Faraday’s law (11.82) the curl of the electric field vanishes,
r ⇥ E = 0. Writing the electrostatic field as the 1-form E = Ei dxi for
i = 1, 2, 3, we may express the vanishing of its curl as

dE = @jEi dx
j ^ dxi =

1

2
(@jEi � @iEj) dx

j ^ dxi = 0 (11.115)

which says that E is closed. We can define a quantity VP (x) as a line integral
of the 1-form E along a path P to x from some starting point x

0

VP (x) = �
Z

x

P,x0

Ei dx
i = �

Z
P
E (11.116)

and so VP (x) will depend on the path P as well as on x
0

and x. But if
r ⇥ E = 0 in some ball (or neighborhood) around x and x

0

, then within
that ball the dependence on the path P drops out because the di↵erence
VP 0(x) � VP (x) is the line integral of E around a closed loop in the ball
which by Stokes’s theorem (6.44) is an integral of the vanishing curl r ⇥ E

over any surface S in the ball whose boundary @S is the closed curve P 0�P

VP 0(x)� VP (x) =

I
P 0�P

Ei dx
i =

Z
S
(r ⇥ E) · da = 0 (11.117)

or

VP 0(x)� VP (x) =

Z
@S

E =

Z
S
dE = 0 (11.118)

in the language of forms (George Stokes, 1819–1903). Thus the potential
VP (x) = V (x) is independent of the path, E = �rV (x), and the 1-form
E = Ei dxi = �@iV dxi = �dV is locally exact.

The general form of Stokes’s theorem is that the integral of any p-form
H over the boundary @R of any (p + 1)-dimensional, simply connected,
orientable region R is equal to the integral of the (p+ 1)-form dH over RZ

@R
H =

Z
R
dH (11.119)

which for p = 1 gives (6.44).

Example 11.13 (Stokes’s Theorem for 0-forms) Here p = 0, the region
R = [a, b] is 1-dimensional, H is a 0-form, and Stokes’s theorem is

H(b)�H(a) =

Z
@R

H =

Z
R
dH =

Z b

a
dH(x) =

Z b

a
H 0(x) dx (11.120)

familiar from elementary calculus.


