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is the 2-form

dA = 0yAz dy Ndx + 0, A, dz N dx
+ 0, Aydx Ndy + 0. Ay dz Ndy
+ 0, A, dx Ndz + 0yA. dy N\ dz
= (0yA, — 0, Ay)dy Ndz (11.111)
+ (0,4, — 0:A,)dz N dx
+ (0:Ay — 0yAz) dz N dy
=(VxApdyNdz+ (V x A)ydzNdx+ (V x A), dx Ndy
in which we recognize the curl (6.39) of A. O
The exterior derivative of the 1-form A = A; dz7 is the 2-form
dA =dA; Nda! = 0;A;dx' Ndx! =L Fyjda* Ndad = F (11.112)

in which 9; = 8/9z". So d turns the electromagnetic 1-form A—the 4-vector
potential or gauge field A;—into the Faraday 2-form—the tensor Fj;. Its
square dd vanishes: dd applied to any p-form @ is zero

ddQ;..dz' A - = d(0,Q;.. )Ndx" AdxiA- - - = (0,0,Q;...)dx* Adx" Adz* A - =0
(11.113)

because 050, is symmetric in r and s while dz® A dz” is anti-symmetric.

Some writers drop the wedges and write dz? Adx’ as dz’dz? while keeping
the rules of antisymmetry dz'dz? = —dx?dz? and (daci)2 = 0. But this econ-
omy prevents one from using invariant quantities like S = %Sik dz'dz® in
which S;; is a second-rank covariant symmetric tensor. If M;j is a covariant
second-rank tensor with no particular symmetry, then (exercise 11.7) only
its antisymmetric part contributes to the 2-form M;;, dz® A dz* and only its
symmetric part contributes to the quantity M;;, dx’dz®.

The exterior derivative d applied to the Faraday 2-form F = dA gives

dF = ddA =0 (11.114)

which is the Bianchi identity (11.93). A p-form H is closed if dH = 0. By
(11.114), the Faraday 2-form is closed, dF' = 0.

A p-form H is exact if there is a (p — 1)-form K whose differential is
H = dK. The identity (11.113) or dd = 0 implies that every exact form
is closed. The lemma of Poincaré shows that every closed form is locally
exact.

If the A; in the 1-form A = A;dz* commute with each other, then the
2-form A A A = 0. But if the A; don’t commute because they are matrices
or operators or Grassmann variables, then A A A need not vanish.
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Example 11.12 (A Static Electric Field Is Closed and Locally Exact) If
B =0, then by Faraday’s law (11.82) the curl of the electric field vanishes,
V x E = 0. Writing the electrostatic field as the 1-form E = E;dx’ for
1 =1, 2, 3, we may express the vanishing of its curl as

. ] . )
dE = 8JE1 dz? Ndx' = 5 (BJEZ - 81EJ) dz? Ndx' =0 (11115)

which says that F is closed. We can define a quantity Vp(x) as a line integral
of the 1-form F along a path P to & from some starting point xg

Vp(z) = — 5 E;dx’ = /E (11.116)
o

and so Vp(x) will depend on the path P as well as on ¢y and . But if
V X E = 0 in some ball (or neighborhood) around « and x(, then within
that ball the dependence on the path P drops out because the difference
Vpi(x) — Vp(x) is the line integral of E around a closed loop in the ball
which by Stokes’s theorem (6.44) is an integral of the vanishing curl V x E
over any surface S in the ball whose boundary 95 is the closed curve P’ — P

Vpi(2) — Vp(a) = 7{,_13 Eyda' = /S (VXE)-da=0  (11.117)

or

Vp/(ac)—Vp(m):/asE:/SdE:O (11.118)

in the language of forms (George Stokes, 1819-1903). Thus the potential
Vp(x) = V() is independent of the path, E = — VV(x), and the 1-form
E = E;dx' = —0;V da’ = —dV is locally exact. O

The general form of Stokes’s theorem is that the integral of any p-form

H over the boundary OR of any (p + 1)-dimensional, simply connected,
orientable region R is equal to the integral of the (p 4+ 1)-form dH over R

/8RH:/RdH (11.119)

which for p =1 gives (6.44).
Example 11.13 (Stokes’s Theorem for 0-forms) Here p = 0, the region
R = [a,b] is 1-dimensional, H is a 0-form, and Stokes’s theorem is

H(b)—H(a):/8RH:/RdH:/ade(x):/abH’(:c)d:c (11.120)

familiar from elementary calculus. O



