The metric η raises (11.31) and lowers (11.33) the index of a basis vector.
The component $x^{\prime i}$ is related to the components x^{j} by the linear map

$$
\begin{equation*}
x^{\prime i}=e^{\prime i} \cdot p=e^{\prime i} \cdot e_{j} x^{j} . \tag{11.34}
\end{equation*}
$$

Such a map from a 4 -vector x to a 4 -vector x^{\prime} is a Lorentz transformation

$$
\begin{equation*}
x^{\prime i}=L_{j}^{i} x^{j} \quad \text { with matrix } \quad L_{j}^{i}=e^{\prime i} \cdot e_{j} . \tag{11.35}
\end{equation*}
$$

The inner product (p, q) of two points $p=e_{i} x^{i}=e_{i}^{\prime} x^{\prime i}$ and $q=e_{k} y^{k}=$ $e_{k}^{\prime} y^{\prime k}$ is physical and so is invariant under Lorentz transformations

$$
\begin{equation*}
(p, q)=x^{i} y^{k} e_{i} \cdot e_{k}=\eta_{i k} x^{i} y^{k}=x^{\prime i} y^{\prime k} e_{i}^{\prime} \cdot e_{k}^{\prime}=\eta_{i k} x^{\prime i} y^{\prime k} \tag{11.36}
\end{equation*}
$$

With $x^{\prime i}=L^{i}{ }_{r} x^{r}$ and $y^{\prime k}=L^{k}{ }_{s} y^{s}$, this invariance is

$$
\begin{equation*}
\eta_{r s} x^{r} y^{s}=\eta_{i k} L_{r}^{i} x^{r} L^{k}{ }_{s} y^{s}=\eta_{i k} x^{\prime i} y^{\prime k} \tag{11.37}
\end{equation*}
$$

or since x^{r} and y^{s} are arbitrary

$$
\begin{equation*}
\eta_{r s}=\eta_{i k} L^{i}{ }_{r} L^{k}{ }_{s}=L^{i}{ }_{r} \eta_{i k} L^{k}{ }_{s} . \tag{11.38}
\end{equation*}
$$

In matrix notation, a left index labels a row, and a right index labels a column. Transposition interchanges rows and columns $L^{i}{ }_{r}=L_{r}^{\top}{ }^{i}$, so

$$
\begin{equation*}
\eta_{r s}=L_{r}^{\top}{ }^{i} \eta_{i k} L_{s}^{k} \text { or } \quad \eta=L^{\top} \eta L \tag{11.39}
\end{equation*}
$$

in matrix notation. In such matrix products, the height of an indexwhether it is up or down-determines whether it is contravariant or covariant but does not affect its place in its matrix.

Example 11.4 (A Boost) The matrix

$$
L=\left(\begin{array}{cccc}
\gamma & \sqrt{\gamma^{2}-1} & 0 & 0 \tag{11.40}\\
\sqrt{\gamma^{2}-1} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $\gamma=1 / \sqrt{1-v^{2} / c^{2}}$ represents a Lorentz transformation that is a boost in the x-direction. Boosts and rotations are Lorentz transformations. Working with 4×4 matrices can get tedious, so students are advised to think in terms of scalars, like $p \cdot x=p^{i} \eta_{i j} x^{j}=\boldsymbol{p} \cdot \boldsymbol{x}-E t$ whenever possible.

If the basis vectors e and e^{\prime} are independent of p and of x, then the coefficients of the transformation law (11.6) for contravariant vectors are

$$
\begin{equation*}
\frac{\partial x^{\prime i}}{\partial x^{j}}=e^{\prime i} \cdot e_{j} . \tag{11.41}
\end{equation*}
$$

