
432 Tensors and Local Symmetries

The coe�cients e0i · ej form an orthogonal matrix, and the linear operator
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is an orthogonal (real, unitary) transformation. The change x ! x0 is a
rotation plus a possible reflection (exercise 11.2).

Example 11.2 (A Euclidean Space of Two Dimensions) In two-dimensional
euclidean space, one can describe the same point by euclidean (x, y) and
polar (r, ✓) coordinates. The derivatives
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respect the symmetry (11.18), but (exercise 11.1) these derivatives
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do not.

11.6 Summation Conventions

When a given index is repeated in a product, that index usually is being
summed over. So to avoid distracting summation symbols, one writes
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The sum is understood to be over the relevant range of indices, usually from
0 or 1 to 3 or n. Where the distinction between covariant and contravariant
indices matters, an index that appears twice in the same monomial, once
as a subscript and once as a superscript, is a dummy index that is summed
over as in
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These summation conventions make tensor notation almost as compact
as matrix notation. They make equations easier to read and write.


