The coefficients $e_{i}^{\prime} \cdot e_{j}$ form an orthogonal matrix, and the linear operator

$$
\begin{equation*}
\sum_{i=1}^{n} e_{i} e_{i}^{\prime \top}=\sum_{i=1}^{n}\left|e_{i}\right\rangle\left\langle e_{i}^{\prime}\right| \tag{11.21}
\end{equation*}
$$

is an orthogonal (real, unitary) transformation. The change $x \rightarrow x^{\prime}$ is a rotation plus a possible reflection (exercise 11.2).

Example 11.2 (A Euclidean Space of Two Dimensions) In two-dimensional euclidean space, one can describe the same point by euclidean (x, y) and polar (r, θ) coordinates. The derivatives

$$
\begin{equation*}
\frac{\partial r}{\partial x}=\frac{x}{r}=\frac{\partial x}{\partial r} \quad \text { and } \quad \frac{\partial r}{\partial y}=\frac{y}{r}=\frac{\partial y}{\partial r} \tag{11.22}
\end{equation*}
$$

respect the symmetry (11.18), but (exercise 11.1) these derivatives

$$
\begin{equation*}
\frac{\partial \theta}{\partial x}=-\frac{y}{r^{2}} \neq \frac{\partial x}{\partial \theta}=-y \quad \text { and } \quad \frac{\partial \theta}{\partial y}=\frac{x}{r^{2}} \neq \frac{\partial y}{\partial \theta}=x \tag{11.23}
\end{equation*}
$$

do not.

11.6 Summation Conventions

When a given index is repeated in a product, that index usually is being summed over. So to avoid distracting summation symbols, one writes

$$
\begin{equation*}
A_{i} B_{i} \equiv \sum_{i=1}^{n} A_{i} B_{i} . \tag{11.24}
\end{equation*}
$$

The sum is understood to be over the relevant range of indices, usually from 0 or 1 to 3 or n. Where the distinction between covariant and contravariant indices matters, an index that appears twice in the same monomial, once as a subscript and once as a superscript, is a dummy index that is summed over as in

$$
\begin{equation*}
A_{i} B^{i} \equiv \sum_{i=1}^{n} A_{i} B^{i} . \tag{11.25}
\end{equation*}
$$

These summation conventions make tensor notation almost as compact as matrix notation. They make equations easier to read and write.

