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The 2⇥2 matrixD(1/2,0) that represents the Lorentz transformation (10.242)

L = e�i✓
`

J
`

�i�
`

K
` (10.251)

is

D(1/2,0)(✓,�) = exp (�i✓ · �/2� � · �/2) . (10.252)

And so the generic D(1/2,0) matrix is

D(1/2,0)(✓,�) = e�z·�/2 (10.253)

with � = Rez and ✓ = Imz. It is nonunitary and of unit determinant; it is
a member of the group SL(2, C) of complex unimodular 2⇥2 matrices. The
(covering) group SL(2, C) relates to the Lorentz group SO(3, 1) as SU(2)
relates to the rotation group SO(3).

Example 10.31 (The Standard Left-Handed Boost ) For a particle of
mass m > 0, the “standard” boost that takes the 4-vector k = (m,0) to
p = (p0,p), where p0 =

p
m2 + p2, is a boost in the p̂ direction

B(p) = R(p̂)B
3

(p0)R�1(p̂) = exp (↵ p̂ · B) (10.254)

in which cosh↵ = p0/m and sinh↵ = |p|/m, as one may show by expanding
the exponential (exercise 10.33).
For � = ↵ p̂, one may show (exercise 10.34) that the matrix D(1/2,0)(0,�)

is

D(1/2,0)(0,↵ p̂) = e�↵p̂·�/2 = I cosh(↵/2)� p̂ · � sinh(↵/2)

= I
p
(p0 +m)/(2m)� p̂ · �

p
(p0 �m)/(2m)

=
p0 +m� p · �p

2m(p0 +m)
(10.255)

in the third line of which the 2⇥ 2 identity matrix I is suppressed.

Under D(1/2,0), the vector (�I,�) transforms like a 4-vector. For tiny ✓

and �, one may show (exercise 10.36) that the vector (�I,�) transforms as

D†(1/2,0)(✓,�)(�I)D(1/2,0)(✓,�) = � I + � · �
D†(1/2,0)(✓,�) �D(1/2,0)(✓,�) = � + (�I)�+ ✓^�

(10.256)

which is how the 4-vector (t,x) transforms (10.241). Under a finite Lorentz
transformation L the 4-vector Sa ⌘ (�I,�) becomes

D†(1/2,0)(L)SaD(1/2,0)(L) = La
bS

b. (10.257)
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A massless field ⇠(x) that responds to a unitary Lorentz transformation
U(L) like

U(L) ⇠(x)U�1(L) = D(1/2,0)(L�1) ⇠(Lx) (10.258)

is called a left-handed Weyl spinor. We will see in example 10.32 why
the action density for such spinors

L`(x) = i ⇠†(x) (@
0

I �r · �) ⇠(x) (10.259)

is Lorentz covariant, that is

U(L)L`(x)U
�1(L) = L`(Lx). (10.260)

Example 10.32 (Why L` Is Lorentz Covariant) We first note that the
derivatives @0b in L`(Lx) are with respect to x0 = Lx. Since the inverse
matrix L�1 takes x0 back to x = L�1x0 or in tensor notation xa = L�1a

b x
0b,

the derivative @0b is

@0b =
@

@x0b
=
@xa

@x0b
@

@xa
= L�1a

b

@

@xa
= @a L

�1a
b. (10.261)

Now using the abbreviation @
0

I �r · � ⌘ � @aSa and the transformation
laws (10.257 & 10.258), we have

U(L)L`(x)U
�1(L) = i ⇠†(Lx)D(1/2,0)†(L�1)(� @aS

a)D(1/2,0)(L�1) ⇠(Lx)

= i ⇠†(Lx)(� @aL
�1a

bS
b) ⇠(Lx)

= i ⇠†(Lx)(� @0bS
b) ⇠(Lx) = L`(Lx) (10.262)

which shows that L` is Lorentz covariant.

Incidentally, the rule (10.261) ensures, among other things, that the di-
vergence @aV a is invariant

(@aV
a)0 = @0aV

0a = @b L
�1b

a L
a
cV

c = @b �
b
c V

c = @b V
b. (10.263)

Example 10.33 (Why ⇠ is Left Handed) The space-time integral S of the
action density L` is stationary when ⇠(x) satisfies the wave equation

(@
0

I �r · �) ⇠(x) = 0 (10.264)

or in momentum space

(E + p · �) ⇠(p) = 0. (10.265)

Multiplying from the left by (E � p · �), we see that the energy of a particle
created or annihilated by the field ⇠ is the same as its momentum E = |p|
in accord with the absence of a mass term in the action density L`. And
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because the spin of the particle is represented by the matrix J = �/2, the
momentum-space relation (10.265) says that ⇠(p) is an eigenvector of p̂ · J

p̂ · J ⇠(p) = � 1

2
⇠(p) (10.266)

with eigenvalue � 1/2. A particle whose spin is opposite to its momentum
is said to have negative helicity or to be left handed. Nearly massless
neutrinos are nearly left handed.

One may add to this action density the Majorana mass term

LM (x) = �1

2

m
⇣
⇠†(x)�

2

⇠⇤(x) + ⇠T(x)�
2

⇠(x)
⌘

(10.267)

which is Lorentz covariant because the matrices �
1

and �
3

anti-commute
with �

2

which is antisymmetric (exercise 10.39). Since charge is conserved,
only neutral fields like neutrinos can have Majorana mass terms.
The generators of the representation D(0,1/2) with j = 0 and j0 = 1/2 are

given by (10.247 & 10.249) with J+ = 0 and J� = �/2; they are

J =
1

2
� and K = i

1

2
�. (10.268)

Thus 2⇥ 2 matrix D(0,1/2)(✓,�) that represents the Lorentz transformation
(10.242)

L = e�i✓
`

J
`

�i�
j

K
j (10.269)

is

D(0,1/2)(✓,�) = exp (�i✓ · �/2 + � · �/2) = D(1/2,0)(✓, � �) (10.270)

which di↵ers from D(1/2,0)(✓,�) only by the sign of �. The generic D(0,1/2)

matrix is the complex unimodular 2⇥ 2 matrix

D(0,1/2)(✓,�) = ez
⇤·�/2 (10.271)

with � = Rez and ✓ = Imz.

Example 10.34 (The Standard Right-Handed Boost ) For a particle of
mass m > 0, the “standard” boost (10.254) that transforms k = (m,0) to
p = (p0,p) is the 4⇥ 4 matrix B(p) = exp (↵ p̂ · B) in which cosh↵ = p0/m
and sinh↵ = |p|/m. This Lorentz transformation with ✓ = 0 and � = ↵ p̂
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is represented by the matrix (exercise 10.35)

D(0,1/2)(0,↵ p̂) = e↵p̂·�/2 = I cosh(↵/2) + p̂ · � sinh(↵/2)

= I
p

(p0 +m)/(2m) + p̂ · �
p
(p0 �m)/(2m)

=
p0 +m+ p · �p

2m(p0 +m)

(10.272)

in the third line of which the 2⇥ 2 identity matrix I is suppressed.

Under D(0,1/2), the vector (I,�) transforms as a 4-vector; for tiny z

D†(0,1/2)(✓,�) I D(0,1/2)(✓,�) = I + � · �
D†(0,1/2)(✓,�) �D(0,1/2)(✓,�) = � + I�+ ✓^�

(10.273)

as in (10.241).
A massless field ⇣(x) that responds to a unitary Lorentz transformation

U(L) as

U(L) ⇣(x)U�1(L) = D(0,1/2)(L�1) ⇣(Lx) (10.274)

is called a right-handed Weyl spinor. One may show (exercise 10.38)
that the action density

Lr(x) = i ⇣†(x) (@
0

I +r · �) ⇣(x) (10.275)

is Lorentz covariant

U(L)Lr(x)U
�1(L) = Lr(Lx). (10.276)

Example 10.35 (Why ⇣ Is Right Handed) An argument like that of ex-
ample (10.33) shows that the field ⇣(x) satisfies the wave equation

(@
0

I +r · �) ⇣(x) = 0 (10.277)

or in momentum space

(E � p · �) ⇣(p) = 0. (10.278)

Thus, E = |p|, and ⇣(p) is an eigenvector of p̂ · J

p̂ · J ⇣(p) = 1

2
⇣(p) (10.279)

with eigenvalue 1/2. A particle whose spin is parallel to its momentum is
said to have positive helicity or to be right handed. Nearly massless
antineutrinos are nearly right handed.
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The Majorana mass term

LM (x) = �1

2

m
⇣
⇣†(x)�

2

⇣⇤(x) + ⇣T(x)�
2

⇣(x)
⌘

(10.280)

like (10.267) is Lorentz covariant.

10.33 The Dirac Representation of the Lorentz Group

Dirac’s representation of SO(3, 1) is the direct sum D(1/2,0) � D(0,1/2) of
D(1/2,0) and D(0,1/2). Its generators are the 4⇥ 4 matrices

J =
1

2

✓
� 0
0 �

◆
and K =

i

2

✓
�� 0
0 �

◆
. (10.281)

Dirac’s representation uses the Cli↵ord algebra of the gamma matrices �a

which satisfy the anticommutation relation

{�a, �b} ⌘ �a �b + �b �a = 2⌘abI (10.282)

in which ⌘ is the 4⇥ 4 diagonal matrix (10.223) with ⌘00 = �1 and ⌘jj = 1
for j = 1, 2, and 3, and I is the 4⇥ 4 identity matrix.
Remarkably, the generators of the Lorentz group

J ij = ✏ijkJk and J0j = Kj (10.283)

may be represented as commutators of gamma matrices

Jab = � i

4
[�a, �b]. (10.284)

They transform the gamma matrices as a 4-vector

[Jab, �c] = �i�a ⌘bc + i�b ⌘ac (10.285)

(exercise 10.40) and satisfy the commutation relations

i[Jab, Jcd] = ⌘bc Jad � ⌘ac Jbd � ⌘da Jcb + ⌘db Jca (10.286)

of the Lorentz group (Weinberg, 1995, p. 213–217) (exercise 10.41).
The gamma matrices �a are not unique; if S is any 4⇥ 4 matrix with an

inverse, then the matrices �0a ⌘ S�aS�1 also satisfy the definition (10.282).
The choice

�0 = �i

✓
0 1
1 0

◆
and � = �i

✓
0 �

� � 0

◆
(10.287)
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makes J and K block diagonal (10.281) and lets us assemble a left-handed
spinor ⇠ and a right-handed spinor ⇣ neatly into a 4-component spinor

 =

✓
⇠
⇣

◆
. (10.288)

Dirac’s action density for a 4-spinor is

L = �  (�a@a +m) ⌘ �  ( 6@ +m) (10.289)

in which

 ⌘ i †�0 =  †
✓
0 1
1 0

◆
=
�
⇣† ⇠†

�
. (10.290)

The kinetic part is the sum of the left-handed L` and right-handed Lr action
densities (10.259 & 10.275)

�  �a@a = i⇠† (@
0

I �r · �) ⇠ + i ⇣† (@
0

I +r · �) ⇣. (10.291)

If ⇠ is a left-handed spinor transforming as (10.258), then the spinor

⇣ = �
2

⇠⇤ ⌘
✓
0 �i
i 0

◆ 
⇠†
1

⇠†
2

!
(10.292)

transforms as a right-handed spinor (10.274), that is (exercise 10.42)

ez
⇤·�/2�

2

⇠⇤ = �
2

⇣
e�z·�/2⇠

⌘⇤
. (10.293)

Similarly, if ⇣ is right handed, then ⇠ = �
2

⇣⇤ is left handed.
The simplest 4-spinor is the Majorana spinor

 M =

✓
⇠

�
2

⇠⇤

◆
=

✓
�
2

⇣⇤

⇣

◆
= �i�2 ⇤

M (10.294)

whose particles are the same as its antiparticles.
If two Majorana spinors  (1)

M and  (2)

M have the same mass, then one may
combine them into a Dirac spinor

 D =
1p
2

⇣
 (1)

M + i (2)

M

⌘
=

1p
2

✓
⇠(1) + i⇠(2)

⇣(1) + i⇣(2)

◆
=

✓
⇠D
⇣D

◆
. (10.295)

The Dirac mass term

�m D D = �m
⇣
⇣†D⇠D + ⇠†D⇣D

⌘
(10.296)
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conserves charge. For a Majorana field, it reduces to

� 1

2

m M M = � 1

2

m
⇣
⇣†⇠ + ⇠†⇣

⌘
= �1

2

m
⇣
⇠†�

2

⇠⇤ + ⇠T�
2

⇠
⌘

= � 1

2

m
⇣
⇣†�

2

⇣⇤ + ⇣T�
2

⇣
⌘ (10.297)

a Majorana mass term (10.267 or 10.280).

10.34 The Poincaré Group

The elements of the Poincaré group are products of Lorentz transformations
and translations in space and time. The Lie algebra of the Poincaré group
therefore includes the generators J and K of the Lorentz group as well
as the hamiltonian H and the momentum operator P which respectively
generate translations in time and space.
Suppose T (y) is a translation that takes a 4-vector x to x+ y and T (z) is

a translation that takes a 4-vector x to x+ z. Then T (z)T (y) and T (y)T (z)
both take x to x + y + z. So if a translation T (y) = T (t,y) is represented
by a unitary operator U(t,y) = exp(iHt� iP · y), then the hamiltonian H
and the momentum operator P commute with each other

[H,P j ] = 0 and [P i, P j ] = 0. (10.298)

We can figure out the commutation relations ofH and P with the angular-
momentum J and boost K operators by realizing that P a = (H,P ) is a
4-vector. Let

U(✓,�) = e�i✓·J�i�·K (10.299)

be the (infinite-dimensional) unitary operator that represents (in Hilbert
space) the infinitesimal Lorentz transformation

L = I + ✓ · R+ � · B (10.300)

where R and B are the six 4⇥ 4 matrices (10.232 & 10.233). Then because
P is a 4-vector under Lorentz transformations, we have

U�1(✓,�)PU(✓,�) = e+i✓·J+i�·KPe�i✓·J�i�·K = (I + ✓ · R+ � · B)P
(10.301)

or using (10.273)

(I + i✓ · J + i� · K)H (I � i✓ · J � i� · K) = H + � · P (10.302)

(I + i✓ · J + i� · K)P (I � i✓ · J � i� · K) = P +H�+ ✓ ^ P .


