and generate the elements of the group $S U(2)$

$$
\begin{equation*}
\exp \left(i \boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2}\right)=I \cos \frac{\theta}{2}+i \hat{\boldsymbol{\theta}} \cdot \boldsymbol{\sigma} \sin \frac{\theta}{2} \tag{10.118}
\end{equation*}
$$

in which I is the 2×2 identity matrix, $\theta=\sqrt{\boldsymbol{\theta}^{2}}$ and $\hat{\boldsymbol{\theta}}=\boldsymbol{\theta} / \theta$.
It follows from (10.117) that the spin operators satisfy

$$
\begin{equation*}
\left[S_{a}, S_{b}\right]=i \hbar \epsilon_{a b c} S_{c} \tag{10.119}
\end{equation*}
$$

The raising and lowering operators

$$
\begin{equation*}
S_{ \pm}=S_{1} \pm i S_{2} \tag{10.120}
\end{equation*}
$$

have simple commutators with S_{3}

$$
\begin{equation*}
\left[S_{3}, S_{ \pm}\right]= \pm \hbar S_{ \pm} \tag{10.121}
\end{equation*}
$$

This relation implies that if the state $|j, m\rangle$ is an eigenstate of S_{3} with eigenvalue $\hbar m$, then the states $S_{ \pm}|j, m\rangle$ either vanish or are eigenstates of S_{3} with eigenvalues $\hbar(m \pm 1)$

$$
\begin{equation*}
S_{3} S_{ \pm}|j, m\rangle=S_{ \pm} S_{3}|j, m\rangle \pm \hbar S_{ \pm}|j, m\rangle=\hbar(m \pm 1) S_{ \pm}|j, m\rangle \tag{10.122}
\end{equation*}
$$

Thus the raising and lowering operators raise and lower the eigenvalues of S_{3}. When $j=1 / 2$, the possible values of m are $m= \pm 1 / 2$, and so with the usual sign and normalization conventions

$$
\begin{equation*}
S_{+}|-\rangle=\hbar|+\rangle \quad \text { and } \quad S_{-}|+\rangle=\hbar|-\rangle \tag{10.123}
\end{equation*}
$$

while

$$
\begin{equation*}
S_{+}|+\rangle=0 \quad \text { and } \quad S_{-}|-\rangle=0 \tag{10.124}
\end{equation*}
$$

The square of the total spin operator is simply related to the raising and lowering operators and to S_{3}

$$
\begin{equation*}
\boldsymbol{S}^{2}=S_{1}^{2}+S_{2}^{2}+S_{3}^{2}=\frac{1}{2} S_{+} S_{-}+\frac{1}{2} S_{-} S_{+}+S_{3}^{2} \tag{10.125}
\end{equation*}
$$

But the squares of the Pauli matrices are unity, and so $S_{a}^{2}=(\hbar / 2)^{2}$ for all three values of a. Thus

$$
\begin{equation*}
\boldsymbol{S}^{2}=\frac{3}{4} \hbar^{2} \tag{10.126}
\end{equation*}
$$

is a Casimir operator (10.105) for a spin one-half system.
Example 10.20 (Two Spin 1/2's) Consider two spin operators $\boldsymbol{S}^{(1)}$ and

