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of the representation Dy, and so Do would be reducible, which is contrary
to our assumption that Dy and Dy are irreducible. So the null space N(A)
must be the whole space upon which A acts, that is, A = 0.

A similar argument shows that if (y|A = 0 for some bra (y|, then A = 0.

So either A is zero or it annihilates no ket and no bra. In the latter case, A
must be square and invertible, which would imply that Ds(g) = A=1D;(g)A,
that is, that D; and D, are equivalent representations, which is contrary
to our assumption that they are inequivalent. The only way out is that A
vanishes.

Part 2: If for a finite-dimensional, irreducible representation D(g) of a
group G, we have D(g)A = AD(g) for some matrix A and for all g € G,
then A = ¢I. That is, any matrix that commutes with every element of
a finite-dimensional, irreducible representation must be a multiple of the
identity matrix.

Proof: Every square matrix A has at least one eigenvector |z) and eigen-
value ¢ so that A|x) = c|z) because its characteristic equation det(A—cl) =0
always has at least one root by the fundamental theorem of algebra (5.73).
So the null space N (A — ¢I) has dimension greater than zero. The assump-
tion D(g)A = AD(g) for all g € G implies that D(g)(A—cl) = (A—cI)D(g)
for all g € G. Let P be the projection operator onto the null space N'(A—cI).
Then we have (A — cI)D(g)P = D(g)(A — cI)P = 0 for all ¢ € G which
implies that D(g)P maps vectors into the null space N (A — ¢I). This null
space therefore is a subspace that is invariant under D(g), which means that
D is reducible unless the null space N'(A — ¢I) is the whole space. Since by
assumption D is irreducible, it follows that N (A — cI) is the whole space,
that is, that A = c¢I. (Issai Schur, 1875-1941)

Example 10.9 (Schur, Wigner, and Eckart) Suppose an arbitrary observ-
able O is invariant under the action of the rotation group SU(2) represented
by unitary operators U(g) for g € SU(2)

Ul(g)OU(g) =0 or [0,U(g)]=0. (10.23)

These unitary rotation operators commute with the square J? of the angular
momentum [J U | = 0. Suppose that they also leave the hamiltonian H
unchanged [H, U] = 0. Then as shown in example 10.7, the state U|E, j, m)
is a sum of states all with the same values of j and E. It follows that

> (B 5,m|OIE, j',m!)(E', j',m|U(g)|E', j',m")

. E i E. i m/ME. i.m/|O\E". i m" (10'24)
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or in the notation of (10.13)

Z(E ]7m’O‘El7j m>D<] mm” = ZD mm’ E .77 /‘O’Elvj,am”>'

ml

(10.25)
Now Part 1 of Schur’s lemma tells us that the matrix (E, j, m|O|E’, j',m’)
must vanish unless the representations are equivalent, which is to say unless
j =j'. So we have
Z<E7j7m’O‘Elaja >D(j m/m/! _ZD mm E .]7 /’O‘E/7j7m”>'

(10.26)
Now Part 2 of Schur’s lemma tells us that the matrix (E, j, m|O|E’, j,m’)
must be a multiple of the identity. Thus the symmetry of O under rotations
simplifies the matrix element to

<E,j, ’I?’L|O|E/,j,, m/> = 6]]’5mm’OJ(E7 El) (1027)

This result is a special case of the Wigner-Eckart theorem (Eugene
Wigner 1902-1995, Carl Eckart 1902-1973). O

10.8 Characters

Suppose the n x n matrices D;;j(g) form a representation of a group G > g.
The character xp(g) of the matrix D(g) is the trace

xp(g) = TrD(yg ZD“ (10.28)

Traces are cyclic, that is, TrABC = TrBC' A = TrC AB. So if two represen-
tations D and D’ are equivalent, so that D’(g) = S~'D(g)S, then they have
the same characters because

xpr(9) = TrD'(g) = Tr (S~ D(g)S) = Tr (D(9)SS ™) = TrD(g) = xn(9)-

(10.29)

If two group elements g; and gs are in the same conjugacy class, that is,

if go = gg1g~" for all g € G, then they have the same character in a given
representation D(g) because

xp(g2) = TrD(g2) = TrD(ggrg~") = Tr (D(g9)D(91)D (g "))
= Tr (D(g1)D~"(9)D(9)) = TrD(g1) = xp(91)- (10.30)
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10.9 Tensor Products

Suppose Dj(g) is a k-dimensional representation of a group G, and Da(g) is
an n-dimensional representation of the same group. Suppose the vectors |¢)
for £ = 1...k are the basis vectors of the k-dimensional space Vi on which
Dy (g) acts, and that the vectors |m) for m = 1...n are the basis vectors of
the n-dimensional space V;, on which Ds(g) acts. The k xn vectors |¢, m) are
basis vectors for the kn-dimensional tensor-product space Vj,,. The matrices
Dp,op,(g) defined as

(¢',m/| Dp,ep,(9)I0,m) = {'| D1(g)|€)(m/| Da(g)|m) (10.31)

act in this kn-dimensional space Vi, and form a representation of the group
G} this tensor-product representation usually is reducible. Many tricks help
one to decompose reducible tensor-product representations into direct sums
of irreducible representations (Georgi, 1999, chap. 10).

Example 10.10 (Adding Angular Momenta) The addition of angular mo-
menta illustrates both the tensor product and its reduction to a direct sum
of irreducible representations. Let Dj (g) and Dj,(g) respectively be the
(251 +1) x (241 + 1) and the (2j2 + 1) x (2j2 + 1) representations of the
rotation group SU(2). The tensor-product representation D D;,@D;,

(m,m5|Dp;, wp,, [m1,ma) = (m1|Dj, (g)|m1)(m| Dj, (g)lma)  (10.32)

is reducible into a direct sum of all the irreducible representations of SU(2)
from Dj, 1j,(g) down to Dj;,_j,(g) in integer steps:

DDj1®Dj2 = Djitjo @ Djitjp-1®--- @ D\j1—j2|+l ® D|j1—j2\ (10.33)
each irreducible representation occurring once in the direct sum. O
Example 10.11 (Adding Two Spins) When one adds j; = 1/2 to j2 = 1/2,

one finds that the tensor-product matrix Dp, /2@Dy /s is equivalent to the
direct sum Dy & Dy

Dp, ,D,,(8) = 87" <Dlée) DOO(O)> S (10.34)

where the matrices S, D1, and Dy respectively are 4 x4, 3x3,and 1 x1. [



