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of the representation D
2

, and so D
2

would be reducible, which is contrary
to our assumption that D

1

and D
2

are irreducible. So the null space N (A)
must be the whole space upon which A acts, that is, A = 0.
A similar argument shows that if hy|A = 0 for some bra hy|, then A = 0.
So either A is zero or it annihilates no ket and no bra. In the latter case, A

must be square and invertible, which would imply that D
2

(g) = A�1D
1

(g)A,
that is, that D

1

and D
2

are equivalent representations, which is contrary
to our assumption that they are inequivalent. The only way out is that A
vanishes.
Part 2: If for a finite-dimensional, irreducible representation D(g) of a

group G, we have D(g)A = AD(g) for some matrix A and for all g 2 G,
then A = cI. That is, any matrix that commutes with every element of
a finite-dimensional, irreducible representation must be a multiple of the
identity matrix.
Proof: Every square matrix A has at least one eigenvector |xi and eigen-

value c so thatA|xi = c|xi because its characteristic equation det(A�cI) = 0
always has at least one root by the fundamental theorem of algebra (5.73).
So the null space N (A� cI) has dimension greater than zero. The assump-
tion D(g)A = AD(g) for all g 2 G implies that D(g)(A�cI) = (A�cI)D(g)
for all g 2 G. Let P be the projection operator onto the null spaceN (A�cI).
Then we have (A � cI)D(g)P = D(g)(A � cI)P = 0 for all g 2 G which
implies that D(g)P maps vectors into the null space N (A � cI). This null
space therefore is a subspace that is invariant under D(g), which means that
D is reducible unless the null space N (A� cI) is the whole space. Since by
assumption D is irreducible, it follows that N (A � cI) is the whole space,
that is, that A = cI. (Issai Schur, 1875–1941)

Example 10.9 (Schur, Wigner, and Eckart) Suppose an arbitrary observ-
able O is invariant under the action of the rotation group SU(2) represented
by unitary operators U(g) for g 2 SU(2)

U †(g)OU(g) = O or [O,U(g)] = 0. (10.23)

These unitary rotation operators commute with the square J2 of the angular
momentum [J2, U ] = 0. Suppose that they also leave the hamiltonian H
unchanged [H,U ] = 0. Then as shown in example 10.7, the state U |E, j,mi
is a sum of states all with the same values of j and E. It follows thatX

m0

hE, j,m|O|E0, j0,m0ihE0, j0,m0|U(g)|E0, j0,m00i

=
X
m0

hE, j,m|U(g)|E, j,m0ihE, j,m0|O|E0, j0,m00i
(10.24)
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or in the notation of (10.13)X
m0

hE, j,m|O|E0, j0,m0iD(j0)(g)m0m00 =
X
m0

D(j)(g)mm0hE, j,m0|O|E0, j0,m00i.

(10.25)
Now Part 1 of Schur’s lemma tells us that the matrix hE, j,m|O|E0, j0,m0i
must vanish unless the representations are equivalent, which is to say unless
j = j0. So we haveX
m0

hE, j,m|O|E0, j,m0iD(j)(g)m0m00 =
X
m0

D(j)(g)mm0hE, j,m0|O|E0, j,m00i.

(10.26)
Now Part 2 of Schur’s lemma tells us that the matrix hE, j,m|O|E0, j,m0i
must be a multiple of the identity. Thus the symmetry of O under rotations
simplifies the matrix element to

hE, j,m|O|E0, j0,m0i = �jj0�mm0Oj(E,E0). (10.27)

This result is a special case of the Wigner-Eckart theorem (Eugene
Wigner 1902–1995, Carl Eckart 1902–1973).

10.8 Characters

Suppose the n⇥ n matrices Dij(g) form a representation of a group G 3 g.
The character �D(g) of the matrix D(g) is the trace

�D(g) = TrD(g) =
nX

i=1

Dii(g). (10.28)

Traces are cyclic, that is, TrABC = TrBCA = TrCAB. So if two represen-
tations D and D0 are equivalent, so that D0(g) = S�1D(g)S, then they have
the same characters because

�D0(g) = TrD0(g) = Tr
�
S�1D(g)S

�
= Tr

�
D(g)SS�1

�
= TrD(g) = �D(g).

(10.29)
If two group elements g

1

and g
2

are in the same conjugacy class, that is,
if g

2

= gg
1

g�1 for all g 2 G, then they have the same character in a given
representation D(g) because

�D(g2) = TrD(g
2

) = TrD(gg
1

g�1) = Tr
�
D(g)D(g

1

)D(g�1)
�

= Tr
�
D(g

1

)D�1(g)D(g)
�
= TrD(g

1

) = �D(g1). (10.30)
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10.9 Tensor Products

Suppose D
1

(g) is a k-dimensional representation of a group G, and D
2

(g) is
an n-dimensional representation of the same group. Suppose the vectors |`i
for ` = 1 . . . k are the basis vectors of the k-dimensional space Vk on which
D

1

(g) acts, and that the vectors |mi for m = 1 . . . n are the basis vectors of
the n-dimensional space Vn on which D

2

(g) acts. The k⇥n vectors |`,mi are
basis vectors for the kn-dimensional tensor-product space Vkn. The matrices
DD1⌦D2(g) defined as

h`0,m0|DD1⌦D2(g)|`,mi = h`0|D
1

(g)|`ihm0|D
2

(g)|mi (10.31)

act in this kn-dimensional space Vkn and form a representation of the group
G; this tensor-product representation usually is reducible. Many tricks help
one to decompose reducible tensor-product representations into direct sums
of irreducible representations (Georgi, 1999, chap. 10).

Example 10.10 (Adding Angular Momenta) The addition of angular mo-
menta illustrates both the tensor product and its reduction to a direct sum
of irreducible representations. Let Dj1(g) and Dj2(g) respectively be the
(2j

1

+ 1) ⇥ (2j
1

+ 1) and the (2j
2

+ 1) ⇥ (2j
2

+ 1) representations of the
rotation group SU(2). The tensor-product representation DD

j1⌦D
j2

hm0
1

,m0
2

|DD
j1⌦D

j2
|m

1

,m
2

i = hm0
1

|Dj1(g)|m1

ihm0
2

|Dj2(g)|m2

i (10.32)

is reducible into a direct sum of all the irreducible representations of SU(2)
from Dj1+j2(g) down to D|j1�j2|(g) in integer steps:

DD
j1⌦D

j2
= Dj1+j2 �Dj1+j2�1

� · · ·�D|j1�j2|+1

�D|j1�j2| (10.33)

each irreducible representation occurring once in the direct sum.

Example 10.11 (Adding Two Spins) When one adds j
1

= 1/2 to j
2

= 1/2,
one finds that the tensor-product matrix DD1/2⌦D1/2

is equivalent to the
direct sum D

1

�D
0

DD1/2⌦D1/2
(✓) = S�1

✓
D

1

(✓) 0
0 D

0

(✓)

◆
S (10.34)

where the matrices S, D
1

, and D
0

respectively are 4⇥4, 3⇥3, and 1⇥1.


