Thus $U(g)$ cannot change E or j, and so

$$
\begin{equation*}
\left\langle E^{\prime}, j^{\prime}, m^{\prime}\right| U(g)|E, j, m\rangle=\delta_{E^{\prime} E} \delta_{j^{\prime} j}\left\langle j, m^{\prime}\right| U(g)|j, m\rangle=\delta_{E^{\prime} E} \delta_{j^{\prime} j} D_{m^{\prime} m}^{(j)}(g) . \tag{10.13}
\end{equation*}
$$

The matrix element (10.11) is a single sum over E and j in which the irreducible representations $D_{m^{\prime} m}^{(j)}(g)$ of the rotation group $S U(2)$ appear

$$
\begin{equation*}
\langle\phi| U(g)|\psi\rangle=\sum_{E, j, m^{\prime}, m}\left\langle\phi \mid E, j, m^{\prime}\right\rangle D_{m^{\prime} m}^{(j)}(g)\langle E, j, m \mid \psi\rangle . \tag{10.14}
\end{equation*}
$$

This is how the block-diagonal form (10.7) usually appears in calculations. The matrices $D_{m^{\prime} m}^{(j)}(g)$ inherit the unitarity of the operator $U(g)$.

10.4 Subgroups

If all the elements of a group S also are elements of a group G, then S is a subgroup of G. Every group G has two trivial subgroups-the identity element e and the whole group G itself. Many groups have more interesting subgroups. For example, the rotations about a fixed axis is an abelian subgroup of the group of all rotations in 3-dimensional space.

A subgroup $S \subset G$ is an invariant subgroup if every element s of the subgroup S is left inside the subgroup under the action of every element g of the whole group G, that is, if

$$
\begin{equation*}
g^{-1} s g=s^{\prime} \in S \quad \text { for all } \quad g \in G . \tag{10.15}
\end{equation*}
$$

This condition often is written as $g^{-1} S g=S$ for all $g \in G$ or as

$$
\begin{equation*}
S g=g S \quad \text { for all } g \in G . \tag{10.16}
\end{equation*}
$$

Invariant subgroups also are called normal subgroups.
A set $C \subset G$ is called a conjugacy class if it's invariant under the action of the whole group G, that is, if $C g=g C$ or

$$
\begin{equation*}
g^{-1} C g=C \quad \text { for all } g \in G . \tag{10.17}
\end{equation*}
$$

A subgroup that is the union of a set of conjugacy classes is invariant.
The center C of a group G is the set of all elements $c \in G$ that commute with every element g of the group, that is, their commutators

$$
\begin{equation*}
[c, g] \equiv c g-g c=0 \tag{10.18}
\end{equation*}
$$

vanish for all $g \in G$.

Example 10.8 (Centers Are Abelian Subgroups) Does the center C always form an abelian subgroup of its group G ? The product $c_{1} c_{2}$ of any two elements c_{1} and c_{2} of the center commutes with every element g of G since $c_{1} c_{2} g=c_{1} g c_{2}=g c_{1} c_{2}$. So the center is closed under multiplication. The identity element e commutes with every $g \in G$, so $e \in C$. If $c^{\prime} \in C$, then $c^{\prime} g=g c^{\prime}$ for all $g \in G$, and so multiplication of this equation from the left and the right by $c^{\prime-1}$ gives $g c^{\prime-1}=c^{\prime-1} g$, which shows that $c^{\prime-1} \in C$. The subgroup C is abelian because each of its elements commutes with all the elements of G including those of C itself.

So the center of any group always is one of its abelian invariant subgroups. The center may be trivial, however, consisting either of the identity or of the whole group. But a group with a nontrivial center can not be simple or semisimple (section 10.23).

10.5 Cosets

If H is a subgroup of a group G, then for every element $g \in G$ the set of elements $H g \equiv\{h g \mid h \in H, g \in G\}$ is a right coset of the subgroup $\boldsymbol{H} \subset \boldsymbol{G}$. (Here \subset means is a subset of or equivalently is contained in.)

If H is a subgroup of a group G, then for every element $g \in G$ the set of elements $g H$ is a left coset of the subgroup $\boldsymbol{H} \subset \boldsymbol{G}$.

The number of elements in a coset is the same as the number of elements of H, which is the order of H.

An element g of a group G is in one and only one right coset (and in one and only one left coset) of the subgroup $H \subset G$. For suppose instead that g were in two right cosets $g \in H g_{1}$ and $g \in H g_{2}$, so that $g=h_{1} g_{1}=h_{2} g_{2}$ for suitable $h_{1}, h_{2} \in H$ and $g_{1}, g_{2} \in G$. Then since H is a (sub)group, we have $g_{2}=h_{2}^{-1} h_{1} g_{1}=h_{3} g_{1}$, which says that $g_{2} \in H g_{1}$. But this means that every element $h g_{2} \in H g_{2}$ is of the form $h g_{2}=h h_{3} g_{1}=h_{4} g_{1} \in H g_{1}$. So every element $h g_{2} \in H g_{2}$ is in $H g_{1}$: the two right cosets are identical, $H g_{1}=H g_{2}$.

The right (or left) cosets are the points of the quotient coset space G / H.

If H is an invariant subgroup of G, then by definition (10.16) $\mathrm{Hg}=g H$ for all $g \in G$, and so the left cosets are the same sets as the right cosets. In this case, the coset space G / H is itself a group with multiplication defined

