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Thus U(g) cannot change E or j, and so

hE0, j0,m0|U(g)|E, j,mi = �E0E�j0jh j,m0|U(g)| j,mi = �E0E�j0jD
(j)
m0m(g).

(10.13)
The matrix element (10.11) is a single sum over E and j in which the

irreducible representations D(j)
m0m(g) of the rotation group SU(2) appear

h�|U(g)| i =
X

E,j,m0,m

h�|E, j,m0iD(j)
m0m(g)hE, j,m| i. (10.14)

This is how the block-diagonal form (10.7) usually appears in calculations.

The matrices D(j)
m0m(g) inherit the unitarity of the operator U(g).

10.4 Subgroups

If all the elements of a group S also are elements of a group G, then S is a
subgroup of G. Every group G has two trivial subgroups—the identity
element e and the whole group G itself. Many groups have more interesting
subgroups. For example, the rotations about a fixed axis is an abelian
subgroup of the group of all rotations in 3-dimensional space.
A subgroup S ⇢ G is an invariant subgroup if every element s of the

subgroup S is left inside the subgroup under the action of every element g
of the whole group G, that is, if

g�1s g = s0 2 S for all g 2 G. (10.15)

This condition often is written as g�1Sg = S for all g 2 G or as

S g = g S for all g 2 G. (10.16)

Invariant subgroups also are called normal subgroups.
A set C ⇢ G is called a conjugacy class if it’s invariant under the action

of the whole group G, that is, if Cg = g C or

g�1C g = C for all g 2 G. (10.17)

A subgroup that is the union of a set of conjugacy classes is invariant.
The center C of a group G is the set of all elements c 2 G that commute

with every element g of the group, that is, their commutators

[c, g] ⌘ cg � gc = 0 (10.18)

vanish for all g 2 G.
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Example 10.8 (Centers Are Abelian Subgroups) Does the center C always
form an abelian subgroup of its group G? The product c
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of any two
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and c
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of the center commutes with every element g of G since
c
1

c
2

g = c
1

gc
2

= gc
1

c
2

. So the center is closed under multiplication. The
identity element e commutes with every g 2 G, so e 2 C. If c0 2 C, then
c0g = gc0 for all g 2 G, and so multiplication of this equation from the left
and the right by c0�1 gives gc0�1 = c0�1g, which shows that c0�1 2 C. The
subgroup C is abelian because each of its elements commutes with all the
elements of G including those of C itself.

So the center of any group always is one of its abelian invariant subgroups.
The center may be trivial, however, consisting either of the identity or of
the whole group. But a group with a nontrivial center can not be simple or
semisimple (section 10.23).

10.5 Cosets

If H is a subgroup of a group G, then for every element g 2 G the set of
elements Hg ⌘ {hg|h 2 H, g 2 G} is a right coset of the subgroup
H ⇢ G. (Here ⇢ means is a subset of or equivalently is contained in.)

If H is a subgroup of a group G, then for every element g 2 G the set of
elements gH is a left coset of the subgroup H ⇢ G.

The number of elements in a coset is the same as the number of elements
of H, which is the order of H.

An element g of a group G is in one and only one right coset (and in one
and only one left coset) of the subgroup H ⇢ G. For suppose instead that g
were in two right cosets g 2 Hg
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2 H and g
1

, g
2

2 G. Then since H is a (sub)group, we have
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, which says that g
2

2 Hg
1

. But this means that every
element hg
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= hh
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. So every
element hg
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2 Hg
2
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1

: the two right cosets are identical, Hg
1

= Hg
2

.

The right (or left) cosets are the points of the quotient coset space
G/H.

If H is an invariant subgroup of G, then by definition (10.16) Hg = gH
for all g 2 G, and so the left cosets are the same sets as the right cosets. In
this case, the coset space G/H is itself a group with multiplication defined


