at $\rho=r$ as well as the separable wave equations (9.57). The frequencies of the resonant TE modes then are $\omega_{n, m, \ell}=c \sqrt{z_{n, m}^{\prime 2} / r^{2}+\pi^{2} \ell^{2} / h^{2}}$.

The TM modes are $B_{z}=0$ and

$$
\begin{equation*}
E_{z}=J_{n}\left(z_{n, m} \rho / r\right) e^{i n \phi} \sin (\pi \ell z / h) e^{-i \omega t} \tag{9.62}
\end{equation*}
$$

with resonant frequencies $\omega_{n, m, \ell}=c \sqrt{z_{n, m}^{2} / r^{2}+\pi^{2} \ell^{2} / h^{2}}$.

9.2 Spherical Bessel functions of the first kind

If in Bessel's equation (9.4), one sets $n=\ell+1 / 2$ and $j_{\ell}=\sqrt{\pi / 2 x} J_{\ell+1 / 2}$, then one may show (exercise 9.21) that

$$
\begin{equation*}
x^{2} j_{\ell}^{\prime \prime}(x)+2 x j_{\ell}^{\prime}(x)+\left[x^{2}-\ell(\ell+1)\right] j_{\ell}(x)=0 \tag{9.63}
\end{equation*}
$$

which is the equation for the spherical Bessel function j_{ℓ}.
We saw in example 6.6 that by setting $V(r, \theta, \phi)=R_{k, \ell}(r) \Theta_{\ell, m}(\theta) \Phi_{m}(\phi)$ we could separate the variables of Helmholtz's equation $-\Delta V=k^{2} V$ in spherical coordinates

$$
\begin{equation*}
\frac{r^{2} \triangle V}{V}=\frac{\left(r^{2} R_{k, \ell}^{\prime}\right)^{\prime}}{R_{k, \ell}}+\frac{\left(\sin \theta \Theta_{\ell, m}^{\prime}\right)^{\prime}}{\sin \theta \Theta_{\ell, m}}+\frac{\Phi^{\prime \prime}}{\sin ^{2} \theta \Phi}=-k^{2} r^{2} \tag{9.64}
\end{equation*}
$$

Thus if $\Phi_{m}(\phi)=e^{i m \phi}$ so that $\Phi_{m}^{\prime \prime}=-m^{2} \Phi_{m}$, and if $\Theta_{\ell, m}$ satisfies the associated Legendre equation (8.91)

$$
\begin{equation*}
\sin \theta\left(\sin \theta \Theta_{\ell, m}^{\prime}\right)^{\prime}+\left[\ell(\ell+1) \sin ^{2} \theta-m^{2}\right] \Theta_{\ell, m}=0 \tag{9.65}
\end{equation*}
$$

then the product $V(r, \theta, \phi)=R_{k, \ell}(r) \Theta_{\ell, m}(\theta) \Phi_{m}(\phi)$ will obey (9.64) because in view of (9.63) the radial function $R_{k, \ell}(r)=j_{\ell}(k r)$ satisfies

$$
\begin{equation*}
\left(r^{2} R_{k, \ell}^{\prime}\right)^{\prime}+\left[k^{2} r^{2}-\ell(\ell+1)\right] R_{k, \ell}=0 \tag{9.66}
\end{equation*}
$$

In terms of the spherical harmonic $Y_{\ell, m}(\theta, \phi)=\Theta_{\ell, m}(\theta) \Phi_{m}(\phi)$, the solution is $V(r, \theta, \phi)=j_{\ell}(k r) Y_{\ell, m}(\theta, \phi)$.

Rayleigh's formula gives the spherical Bessel function

$$
\begin{equation*}
j_{\ell}(x) \equiv \sqrt{\frac{\pi}{2 x}} J_{\ell+1 / 2}(x) \tag{9.67}
\end{equation*}
$$

as the ℓ th derivative of $\sin x / x$

$$
\begin{equation*}
j_{\ell}(x)=(-1)^{\ell} x^{\ell}\left(\frac{1}{x} \frac{d}{d x}\right)^{\ell}\left(\frac{\sin x}{x}\right) \tag{9.68}
\end{equation*}
$$

