9.2 Spherical Bessel functions of the first kind 359

at p = r as well as the separable wave equations (9.57). The frequencies of
the resonant TE modes then are wy, p ¢ = c\/,z;?m/r2 + 7202 /h2.
The TM modes are B, = 0 and

E. = Jn(znm p/r) €M sin(nlz/h) e~ ! (9.62)

with resonant frequencies wy, m ¢ = c\/,z,%m/?“2 + w202 [h2. O

9.2 Spherical Bessel functions of the first kind
If in Bessel’s equation (9.4), one sets n = £+ 1/2 and j, = \/7/2x Jy4 19,
then one may show (exercise 9.21) that
2 j) (x) + 2z jj(x) + [2% — €(£ + 1)] jo(x) = O (9.63)

which is the equation for the spherical Bessel function j,.

We saw in example 6.6 that by setting V (7,0, ¢) = Ry, ¢(1) O, (6) Pr ()
we could separate the variables of Helmholtz’s equation —AV = k?V in
spherical coordinates

r2AV (TQR;c,K)/ (sin0©y,,) o

= = —k*r”. 9.64

Vv Rie | 500,  sm0d " (9.64)

Thus if ®,,(¢) = €"™® so that & = —m?®,,, and if Oy, satisfies the
associated Legendre equation (8.91)

sin @ (sin6 ©7,,,) + [(( +1)sin® 0 — m?] Oy, = 0 (9.65)

then the product V (r,0, ¢) = Ry ¢(1) O (0) Py (¢) will obey (9.64) because
in view of (9.63) the radial function Ry (1) = je(kr) satisfies
(r*Rpp) + [K*r? — €0+ 1)] Ry, = 0. (9.66)

In terms of the spherical harmonic Yy ,,(0, ¢) = O, (6) ®po(¢), the solution

is V(r,0,0) = je(kr) Yom(0, ¢).
Rayleigh’s formula gives the spherical Bessel function

Je(z) = \/ZJ€+1/2(~T) (9.67)

as the ¢th derivative of sinz/x

o) = (1)’ ¢ (”Y (222) (9.68)
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