When $\alpha = 0$, the Helmholtz equation reduces to the Laplace equation $\Delta V = 0$ of electrostatics which the simpler functions

$$V_{k,n}(\rho,\phi,z) = J_n(k\rho)e^{\pm in\phi}e^{\pm kz} \quad \text{and} \quad V_{k,n}(\rho,\phi,z) = J_n(ik\rho)e^{\pm in\phi}e^{\pm ikz}$$
(9.34)

satisfy.

The product $i^{-\nu} J_{\nu}(ik\rho)$ is real and is known as the **modified Bessel** function

$$I_{\nu}(k\rho) \equiv i^{-\nu} J_{\nu}(ik\rho). \tag{9.35}$$

It occurs in various solutions of the **diffusion equation** $D \triangle \phi = \dot{\phi}$. The function $V(\rho, \phi, z) = B(\rho)\Phi(\phi)Z(z)$ satisfies

$$\Delta V = \frac{1}{\rho} \left[(\rho V_{,\rho})_{,\rho} + \frac{1}{\rho} V_{,\phi\phi} + \rho V_{,zz} \right] = \alpha^2 V$$
(9.36)

if $B(\rho)$ obeys Bessel's equation

$$\rho \frac{d}{d\rho} \left(\rho \frac{dB}{d\rho} \right) - \left((\alpha^2 - k^2)\rho^2 + n^2 \right) B = 0 \tag{9.37}$$

and Φ and Z respectively satisfy

$$-\frac{d^2\Phi}{d\phi^2} = n^2\Phi(\phi) \text{ and } \frac{d^2Z}{dz^2} = k^2Z(z)$$
 (9.38)

or if $B(\rho)$ obeys the Bessel equation

$$\rho \frac{d}{d\rho} \left(\rho \frac{dB}{d\rho} \right) - \left((\alpha^2 + k^2)\rho^2 + n^2 \right) B = 0$$
(9.39)

and Φ and Z satisfy

$$-\frac{d^2\Phi}{d\phi^2} = n^2\Phi(\phi)$$
 and $\frac{d^2Z}{dz^2} = -k^2Z(z).$ (9.40)

In the first case (9.37 & 9.38), the solution V is

$$V_{k,n}(\rho,\phi,z) = I_n(\sqrt{\alpha^2 - k^2} \,\rho) e^{\pm in\phi} e^{\pm kz}$$
(9.41)

while in the second case (9.39 & 9.40), it is

$$V_{k,n}(\rho,\phi,z) = I_n(\sqrt{\alpha^2 + k^2} \,\rho) e^{\pm in\phi} e^{\pm ikz}.$$
(9.42)

In both cases, n must be an integer if the solution is to be single valued on the full range of ϕ from 0 to 2π .