These integrals (exercise 9.8) give $J_{n}(0)=0$ for $n \neq 0$, and $J_{0}(0)=1$.
By differentiating the generating function (9.5) with respect to u and identifying the coefficients of powers of u, one finds the recursion relation

$$
\begin{equation*}
J_{n-1}(z)+J_{n+1}(z)=\frac{2 n}{z} J_{n}(z) . \tag{9.8}
\end{equation*}
$$

Similar reasoning after taking the z derivative gives (exercise 9.10)

$$
\begin{equation*}
J_{n-1}(z)-J_{n+1}(z)=2 J_{n}^{\prime}(z) \tag{9.9}
\end{equation*}
$$

By using the gamma function (section 5.12), one may extend Bessel's equation (9.4) and its solutions $J_{n}(z)$ to non-integral values of n

$$
\begin{equation*}
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{z}{2}\right)^{2 m} . \tag{9.10}
\end{equation*}
$$

Letting $z=a x$ in (9.4), we arrive (exercise 9.11) at the self-adjoint form (6.307) of Bessel's equation

$$
\begin{equation*}
-\frac{d}{d x}\left(x \frac{d}{d x} J_{n}(a x)\right)+\frac{n^{2}}{x} J_{n}(a x)=a^{2} x J_{n}(a x) \tag{9.11}
\end{equation*}
$$

In the notation of equation (6.287), $p(x)=x, a^{2}$ is an eigenvalue, and $\rho(x)=x$ is a weight function. To have a self-adjoint system (section 6.28) on an interval $[0, b]$, we need the boundary condition (6.247)

$$
\begin{equation*}
0=\left[p\left(J_{n} v^{\prime}-J_{n}^{\prime} v\right)\right]_{0}^{b}=\left[x\left(J_{n} v^{\prime}-J_{n}^{\prime} v\right)\right]_{0}^{b} \tag{9.12}
\end{equation*}
$$

for all functions $v(x)$ in the domain D of the system. Since $p(x)=x$, $J_{0}(0)=1$, and $J_{n}(0)=0$ for integers $n>0$, the terms in this boundary condition vanish at $x=0$ as long as the domain consists of functions $v(x)$ that are twice differentiable on the interval $[0, b]$. To make these terms vanish at $x=b$, we require that $J_{n}(a b)=0$ and that $v(a b)=0$. So $a b$ must be a zero $z_{n, m}$ of $J_{n}(z)$, that is $J_{n}(a b)=J_{n}\left(z_{n, m}\right)=0$. With $a=z_{n, m} / b$, Bessel's equation (9.11) is

$$
\begin{equation*}
-\frac{d}{d x}\left(x \frac{d}{d x} J_{n}\left(z_{n, m} x / b\right)\right)+\frac{n^{2}}{x} J_{n}\left(z_{n, m} x / b\right)=\frac{z_{n, m}^{2}}{b^{2}} x J_{n}\left(z_{n, m} x / b\right) . \tag{9.13}
\end{equation*}
$$

For fixed n, the eigenvalue $a^{2}=z_{n, m}^{2} / b^{2}$ is different for each positive integer m. Moreover as $m \rightarrow \infty$, the zeros $z_{n, m}$ of $J_{n}(x)$ rise as $m \pi$ as one might expect since the leading term of the asymptotic form (9.3) of $J_{n}(x)$ is proportional to $\cos (x-n \pi / 2-\pi / 4)$ which has zeros at $m \pi+(n+1) \pi / 2+\pi / 4$. It follows that the eigenvalues $a^{2} \approx(m \pi)^{2} / b^{2}$ increase without limit as $m \rightarrow \infty$ in accordance with the general result of section 6.34. It follows then from

