will be a solution of the Helmholtz equation $-\triangle f=k^{2} f$ if $R_{k, \ell}$ is a linear combination of the spherical Bessel functions j_{ℓ} (8.77) and n_{ℓ} (8.79)

$$
\begin{equation*}
R_{k, \ell}(r)=a_{k, \ell} j_{\ell}(k r)+b_{k, \ell} n_{\ell}(k r) \tag{8.89}
\end{equation*}
$$

if $\Phi_{m}=e^{i m \phi}$, and if $\Theta_{\ell, m}$ satisfies the associated Legendre equation

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta_{\ell, m}}{d \theta}\right)+\left[\ell(\ell+1)-\frac{m^{2}}{\sin ^{2} \theta}\right] \Theta_{\ell, m}=0 . \tag{8.90}
\end{equation*}
$$

8.12 The Associated Legendre Functions/Polynomials

The associated Legendre functions $P_{\ell}^{m}(x) \equiv P_{\ell, m}(x)$ are polynomials in $\sin \theta$ and $\cos \theta$. They arise as solutions of the separated θ equation (8.90)

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d P_{\ell, m}}{d \theta}\right)+\left[\ell(\ell+1)-\frac{m^{2}}{\sin ^{2} \theta}\right] P_{\ell, m}=0 \tag{8.91}
\end{equation*}
$$

of the laplacian in spherical coordinates. In terms of $x=\cos \theta$, this selfadjoint ordinary differential equation is

$$
\begin{equation*}
\left[\left(1-x^{2}\right) P_{\ell, m}^{\prime}(x)\right]^{\prime}+\left[\ell(\ell+1)-\frac{m^{2}}{1-x^{2}}\right] P_{\ell, m}(x)=0 . \tag{8.92}
\end{equation*}
$$

The associated Legendre function $P_{\ell, m}(x)$ is simply related to the m th derivative $P_{\ell}^{(m)}(x)$

$$
\begin{equation*}
P_{\ell, m}(x) \equiv\left(1-x^{2}\right)^{m / 2} P_{\ell}^{(m)}(x) . \tag{8.93}
\end{equation*}
$$

To see why this function satisfies the differential equation (8.92), we differentiate

$$
\begin{equation*}
P_{\ell}^{(m)}(x)=\left(1-x^{2}\right)^{-m / 2} P_{\ell, m}(x) \tag{8.94}
\end{equation*}
$$

twice getting

$$
\begin{equation*}
P_{\ell}^{(m+1)}=\left(1-x^{2}\right)^{-m / 2}\left(P_{\ell, m}^{\prime}+\frac{m x P_{\ell, m}}{1-x^{2}}\right) \tag{8.95}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\ell}^{(m+2)}=\left(1-x^{2}\right)^{-m / 2}\left[P_{\ell, m}^{\prime \prime}+\frac{2 m x P_{\ell, m}^{\prime}}{1-x^{2}}+\frac{m P_{\ell, m}}{1-x^{2}}+\frac{m(m+2) x^{2} P_{\ell, m}}{\left(1-x^{2}\right)^{2}}\right] . \tag{8.96}
\end{equation*}
$$

Next we use Leibniz's rule (4.46) to differentiate Legendre's equation (8.28)

$$
\begin{equation*}
\left[\left(1-x^{2}\right) P_{\ell}^{\prime}\right]^{\prime}+\ell(\ell+1) P_{\ell}=0 \tag{8.97}
\end{equation*}
$$

m times, obtaining

$$
\begin{equation*}
\left(1-x^{2}\right) P_{\ell}^{(m+2)}-2 x(m+1) P_{\ell}^{(m+1)}+(\ell-m)(\ell+m+1) P_{\ell}^{(m)}=0 \tag{8.98}
\end{equation*}
$$

Now we put the formulas for the three derivatives (8.94-8.96) into this equation (8.98) and find that the $P_{\ell, m}(x)$ as defined (8.93) obey the desired differential equation (8.92).

Thus the associated Legendre functions are

$$
\begin{equation*}
P_{\ell, m}(x)=\left(1-x^{2}\right)^{m / 2} P_{\ell}^{(m)}(x)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{\ell}(x) \tag{8.99}
\end{equation*}
$$

They are simple polynomials in $x=\cos \theta$ and $\sqrt{1-x^{2}}=\sin \theta$

$$
\begin{equation*}
P_{\ell, m}(\cos \theta)=\sin ^{m} \theta \frac{d^{m}}{d(\cos \theta)^{m}} P_{\ell}(\cos \theta) \tag{8.100}
\end{equation*}
$$

It follows from Rodrigues's formula (8.8) for the Legendre polynomial $P_{\ell}(x)$ that $P_{\ell, m}(x)$ is given by the similar formula

$$
\begin{equation*}
P_{\ell, m}(x)=\frac{\left(1-x^{2}\right)^{m / 2}}{2^{\ell} \ell!} \frac{d^{\ell+m}}{d x^{\ell+m}}\left(x^{2}-1\right)^{\ell} \tag{8.101}
\end{equation*}
$$

which tells us that under parity $P_{\ell}^{m}(x)$ changes by $(-1)^{\ell+m}$

$$
\begin{equation*}
P_{\ell, m}(-x)=(-1)^{\ell+m} P_{\ell, m}(x) . \tag{8.102}
\end{equation*}
$$

Rodrigues's formula (8.101) for the associated Legendre function makes sense as long as $\ell+m \geq 0$. This last condition is the requirement in quantum mechanics that m not be less than $-\ell$. And if m exceeds ℓ, then $P_{\ell, m}(x)$ is given by more than 2ℓ derivatives of a polynomial of degree 2ℓ; so $P_{\ell, m}(x)=0$ if $m>\ell$. This last condition is the requirement in quantum mechanics that m not be greater than ℓ. So we have

$$
\begin{equation*}
-\ell \leq m \leq \ell \tag{8.103}
\end{equation*}
$$

One may show that

$$
\begin{equation*}
P_{\ell,-m}(x)=(-1)^{m} \frac{(\ell-m)!}{(\ell+m)!} P_{\ell, m}(x) . \tag{8.104}
\end{equation*}
$$

In fact, since m occurs only as m^{2} in the ordinary differential equation (8.92), $P_{\ell,-m}(x)$ must be proportional to $P_{\ell, m}(x)$.

Under reflections, the parity of $P_{\ell, m}$ is $(-1)^{\ell+m}$, that is,

$$
\begin{equation*}
P_{\ell, m}(-x)=(-1)^{\ell+m} P_{\ell, m}(x) \tag{8.105}
\end{equation*}
$$

If $m \neq 0$, then $P_{\ell, m}(x)$ has a power of $\sqrt{1-x^{2}}$ in it, so

$$
\begin{equation*}
P_{\ell, m}(\pm 1)=0 \quad \text { for } \quad m \neq 0 \tag{8.106}
\end{equation*}
$$

We may consider either $\ell(\ell+1)$ or m^{2} as the eigenvalue in the ODE (8.92)

$$
\begin{equation*}
\left[\left(1-x^{2}\right) P_{\ell, m}^{\prime}(x)\right]^{\prime}+\left[\ell(\ell+1)-\frac{m^{2}}{1-x^{2}}\right] P_{\ell, m}(x)=0 \tag{8.107}
\end{equation*}
$$

If $\ell(\ell+1)$ is the eigenvalue, then the weight function is unity, and since this ODE is self adjoint on the interval $[-1,1]$ (at the ends of which $p(x)=$ $\left.\left(1-x^{2}\right)=0\right)$, the eigenfunctions $P_{\ell, m}(x)$ and $P_{\ell^{\prime}, m}(x)$ must be orthogonal on that interval when $\ell \neq \ell^{\prime}$. The full integral formula is

$$
\begin{equation*}
\int_{-1}^{1} P_{\ell, m}(x) P_{\ell^{\prime}, m}(x) d x=\frac{2}{2 \ell+1} \frac{(\ell+m)!}{(\ell-m)!} \delta_{\ell, \ell^{\prime}} \tag{8.108}
\end{equation*}
$$

If m^{2} for fixed ℓ is the eigenvalue, then the weight function is $1 /\left(1-x^{2}\right)$, and the eigenfunctions $P_{\ell, m}(x)$ and $P_{\ell, m^{\prime}}(x)$ must be orthogonal on $[-1,1]$ when $m \neq m^{\prime}$. The full formula is

$$
\begin{equation*}
\int_{-1}^{1} P_{\ell, m}(x) P_{\ell, m^{\prime}}(x) \frac{d x}{1-x^{2}}=\frac{(\ell+m)!}{m(\ell-m)!} \delta_{m, m^{\prime}} \tag{8.109}
\end{equation*}
$$

8.13 Spherical Harmonics

The spherical harmonic $Y_{\ell}^{m}(\theta, \phi) \equiv Y_{\ell, m}(\theta, \phi)$ is the product

$$
\begin{equation*}
Y_{\ell, m}(\theta, \phi)=\Theta_{\ell, m}(\theta) \Phi_{m}(\phi) \tag{8.110}
\end{equation*}
$$

in which $\Theta_{\ell, m}(\theta)$ is proportional to the associated Legendre function $P_{\ell, m}$

$$
\begin{equation*}
\Theta_{\ell, m}(\theta)=(-1)^{m} \sqrt{\frac{2 \ell+1}{2} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell, m}(\cos \theta) \tag{8.111}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{m}(\phi)=\frac{e^{i m \phi}}{\sqrt{2 \pi}} \tag{8.112}
\end{equation*}
$$

The big square-root in the definition (8.111) ensures that

$$
\begin{equation*}
\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta Y_{\ell, m}^{*}(\theta, \phi) Y_{\ell^{\prime}, m^{\prime}}(\theta, \phi)=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \tag{8.113}
\end{equation*}
$$

