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will be a solution of the Helmholtz equation �4f = k2f if Rk,` is a linear
combination of the spherical Bessel functions j` (8.77) and n` (8.79)

Rk,`(r) = ak,`j`(kr) + bk,`n`(kr) (8.89)

if �m = eim�, and if ⇥`,m satisfies the associated Legendre equation
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8.12 The Associated Legendre Functions/Polynomials

The associated Legendre functions Pm
` (x) ⌘ P`,m(x) are polynomials in sin ✓

and cos ✓. They arise as solutions of the separated ✓ equation (8.90)
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of the laplacian in spherical coordinates. In terms of x = cos ✓, this self-
adjoint ordinary di↵erential equation is⇥
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The associated Legendre function P`,m(x) is simply related to the mth

derivative P (m)
` (x)

P`,m(x) ⌘ (1� x2)m/2 P (m)
` (x). (8.93)

To see why this function satisfies the di↵erential equation (8.92), we di↵er-
entiate
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Next we use Leibniz’s rule (4.46) to di↵erentiate Legendre’s equation (8.28)
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m times, obtaining
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` = 0. (8.98)

Now we put the formulas for the three derivatives (8.94–8.96) into this equa-
tion (8.98) and find that the P`,m(x) as defined (8.93) obey the desired
di↵erential equation (8.92).
Thus the associated Legendre functions are

P`,m(x) = (1� x2)m/2 P (m)
` (x) = (1� x2)m/2 dm

dxm
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They are simple polynomials in x = cos ✓ and
p
1� x2 = sin ✓

P`,m(cos ✓) = sinm ✓
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It follows from Rodrigues’s formula (8.8) for the Legendre polynomial
P`(x) that P`,m(x) is given by the similar formula
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which tells us that under parity Pm
` (x) changes by (�1)`+m

P`,m(�x) = (�1)`+m P`,m(x). (8.102)

Rodrigues’s formula (8.101) for the associated Legendre function makes
sense as long as ` + m � 0. This last condition is the requirement in
quantum mechanics that m not be less than �`. And if m exceeds `, then
P`,m(x) is given by more than 2` derivatives of a polynomial of degree 2`;
so P`,m(x) = 0 if m > `. This last condition is the requirement in quantum
mechanics that m not be greater than `. So we have
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One may show that

P`,�m(x) = (�1)m
(`�m)!

(`+m)!
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In fact, sincem occurs only asm2 in the ordinary di↵erential equation (8.92),
P`,�m(x) must be proportional to P`,m(x).
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Under reflections, the parity of P`,m is (�1)`+m, that is,

P`,m(�x) = (�1)`+m P`,m(x). (8.105)

If m 6= 0, then P`,m(x) has a power of
p
1� x2 in it, so

P`,m(±1) = 0 for m 6= 0. (8.106)

We may consider either `(`+1) or m2 as the eigenvalue in the ODE (8.92)
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If `(` + 1) is the eigenvalue, then the weight function is unity, and since
this ODE is self adjoint on the interval [�1, 1] (at the ends of which p(x) =
(1 � x2) = 0), the eigenfunctions P`,m(x) and P`0,m(x) must be orthogonal
on that interval when ` 6= `0. The full integral formula isZ 1
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If m2 for fixed ` is the eigenvalue, then the weight function is 1/(1 � x2),
and the eigenfunctions P`,m(x) and P`,m0(x) must be orthogonal on [�1, 1]
when m 6= m0. The full formula isZ 1
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8.13 Spherical Harmonics

The spherical harmonic Y m
` (✓,�) ⌘ Y`,m(✓,�) is the product

Y`,m(✓,�) = ⇥`,m(✓)�m(�) (8.110)

in which ⇥`,m(✓) is proportional to the associated Legendre function P`,m
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The big square-root in the definition (8.111) ensures thatZ 2⇡
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