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Instead, we define P, in terms of the mth derivative Pe(m) as
Pon(z) = (1= 22)™2 PI™ () (8.97)

and compute the derivatives
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When we put these three expressions in equation (8.94), we get the desired
ODE (8.92).
Thus the associated Legendre functions are

m dm
Pom(@) = (1= 2?2 P (@) = (1= )2 o Pa)  (899)
They are simple polynomials in z = cos# and v1 — 22 = sin6
m
P, = sin™ P, . 1
2.m(cos ) = sin™ 6 Toos 0 %(cos 6) (8.100)

It follows from Rodrigues’s formula (8.8) for the Legendre polynomial
Py(x) that Py, (x) is given by the similar formula
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which tells us that under parity P;"(z) changes by (—1)“™

Ppn(2) = (z® —1)* (8.101)

Pé,m(_l‘) = (_1)é+m Pé,m(l‘)' (8.102)

Rodrigues’s formula (8.101) for the associated Legendre function makes
sense as long as £ +m > 0. This last condition is the requirement in
quantum mechanics that m not be less than —¢. And if m exceeds ¢, then
Py () is given by more than 2¢ derivatives of a polynomial of degree 2¢;
s0 Py (x) = 0 if m > £. This last condition is the requirement in quantum
mechanics that m not be greater than ¢. So we have

—<m<L (8.103)

One may show that

Pin(e) = ()" ), (8.104)



