The generating function $g(t, x)$ is even under the reflection of both independent variables, so

$$
\begin{equation*}
g(t, x)=\sum_{n=0}^{\infty} t^{n} P_{n}(x)=\sum_{n=0}^{\infty}(-t)^{n} P_{n}(-x)=g(-t,-x) \tag{8.51}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
P_{n}(-x)=(-1)^{n} P_{n}(x) \quad \text { whence } \quad P_{2 n+1}(0)=0 \tag{8.52}
\end{equation*}
$$

With more effort, one can show that

$$
\begin{equation*}
P_{2 n}(0)=(-1)^{n} \frac{(2 n-1)!!}{(2 n)!!} \quad \text { and that } \quad\left|P_{n}(x)\right| \leq 1 \tag{8.53}
\end{equation*}
$$

8.7 Schlaefli's Integral

Schlaefli used Cauchy's integral formula (5.36) and Rodrigues's formula

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n} n!}\left(\frac{d}{d x}\right)^{n}\left(x^{2}-1\right)^{n} \tag{8.54}
\end{equation*}
$$

to express $P_{n}(z)$ as a counterclockwise contour integral around the point z

$$
\begin{equation*}
P_{n}(z)=\frac{1}{2^{n} 2 \pi i} \oint \frac{\left(z^{\prime 2}-1\right)^{n}}{\left(z^{\prime}-z\right)^{n+1}} d z^{\prime} \tag{8.55}
\end{equation*}
$$

8.8 Orthogonal Polynomials

Rodrigues's formula (8.8) generates other families of orthogonal polynomials. The n-th order polynomials R_{n} in which the e_{n} are constants

$$
\begin{equation*}
R_{n}(x)=\frac{1}{e_{n} w(x)} \frac{d^{n}}{d x^{n}}\left[w(x) Q^{n}(x)\right] \tag{8.56}
\end{equation*}
$$

are orthogonal on the interval from a to b with weight function $w(x)$

$$
\begin{equation*}
\int_{a}^{b} R_{n}(x) R_{k}(x) w(x) d x=N_{n} \delta_{n k} \tag{8.57}
\end{equation*}
$$

as long as $Q(x)$ vanishes at a and b (exercise 8.8)

$$
\begin{equation*}
Q(a)=Q(b)=0 \tag{8.58}
\end{equation*}
$$

