Example 6.6 (The Helmholtz Equation in Three Dimensions) In three dimensions and in rectangular coordinates $\boldsymbol{r}=(x, y, z)$, the function $f(x, y, z)=X(x) Y(y) Z(z)$ is a solution of the ODE $-\triangle f=k^{2} f$ as long as X, Y, and Z satisfy $-X_{a}^{\prime \prime}=a^{2} X_{a},-Y_{b}^{\prime \prime}=b^{2} Y_{b}$, and $-Z_{c}^{\prime \prime}=c^{2} Z_{c}$ with $a^{2}+b^{2}+c^{2}=k^{2}$. We set $X_{a}(x)=\alpha \sin a x+\beta \cos a x$ and so forth. Arbitrary linear combinations of the products $X_{a} Y_{b} Z_{c}$ also are solutions of Helmholtz's equation $-\triangle f=k^{2} f$ as long as $a^{2}+b^{2}+c^{2}=k^{2}$.

In cylindrical coordinates (ρ, ϕ, z), the laplacian (6.34) is

$$
\begin{equation*}
\nabla \cdot \nabla f=\Delta f=\frac{1}{\rho}\left[\left(\rho f_{, \rho}\right)_{, \rho}+\frac{1}{\rho} f_{, \phi \phi}+\rho f_{, z z}\right] \tag{6.49}
\end{equation*}
$$

and so if we substitute $f(\rho, \phi, z)=\mathrm{P}(\rho) \Phi(\phi) Z(z)$ into Helmholtz's equation $-\triangle f=\alpha^{2} f$ and multiply both sides by $-\rho^{2} / \mathrm{P} \Phi Z$, then we get

$$
\begin{equation*}
\frac{\rho^{2}}{f} \Delta f=\frac{\rho^{2} \mathrm{P}^{\prime \prime}+\rho \mathrm{P}^{\prime}}{\mathrm{P}}+\frac{\Phi^{\prime \prime}}{\Phi}+\rho^{2} \frac{Z^{\prime \prime}}{Z}=-\alpha^{2} \rho^{2} \tag{6.50}
\end{equation*}
$$

If we set $Z_{k}(z)=e^{k z}$, then this equation becomes (6.46) with k^{2} replaced by $\alpha^{2}+k^{2}$. Its solution then is

$$
\begin{equation*}
f(\rho, \phi, z)=J_{n}\left(\sqrt{\alpha^{2}+k^{2}} \rho\right) e^{i n \phi} e^{k z} \tag{6.51}
\end{equation*}
$$

in which n must be an integer if the solution is to apply to the full range of ϕ from 0 to 2π. The case in which $\alpha=0$ corresponds to Laplace's equation with solution $f(\rho, \phi, z)=J_{n}(k \rho) e^{i n \phi} e^{k z}$. We could have required Z to satisfy $Z^{\prime \prime}=-k^{2} Z$. The solution (6.51) then would be

$$
\begin{equation*}
f(\rho, \phi, z)=J_{n}\left(\sqrt{\alpha^{2}-k^{2}} \rho\right) e^{i n \phi} e^{i k z} \tag{6.52}
\end{equation*}
$$

But if $\alpha^{2}-k^{2}<0$, we write this solution in terms of the modified Bessel function $I_{n}(x)=i^{-n} J_{n}(i x)$ (section 9.3) as

$$
\begin{equation*}
f(\rho, \phi, z)=I_{n}\left(\sqrt{k^{2}-\alpha^{2}} \rho\right) e^{i n \phi} e^{i k z} \tag{6.53}
\end{equation*}
$$

In spherical coordinates, the laplacian (6.35) is

$$
\begin{equation*}
\triangle f=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}} \tag{6.54}
\end{equation*}
$$

in which the first term is $r^{-1}(r f)_{, r r}$. If we set $f(r, \theta, \phi)=R(r) \Theta(\theta) \Phi_{m}(\phi)$ where $\Phi_{m}=e^{i m \phi}$ and multiply both sides of the Helmholtz equation $-\triangle f=$ $k^{2} f$ by $-r^{2} / R \Theta \Phi$, then we get

$$
\begin{equation*}
\frac{\left(r^{2} R^{\prime}\right)^{\prime}}{R}+\frac{\left(\sin \theta \Theta^{\prime}\right)^{\prime}}{\sin \theta \Theta}-\frac{m^{2}}{\sin ^{2} \theta}=-k^{2} r^{2} \tag{6.55}
\end{equation*}
$$

