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we write G(x� y) in terms of the complete set of eigenfunctions uk as

G(x� y) =
1X
k=1

uk(x)uk(y)

�k
(6.410)

so that the action Luk = �k⇢uk turns G into

LG(x� y) =
1X
k=1

Luk(x)uk(y)

�k
=

1X
k=1

⇢(x)uk(x)uk(y) = �(x� y) (6.411)

our ↵ = 1 series expansion (6.374) of the delta function.

6.39 Green’s Functions in One Dimension

In one dimension, we can explicitly solve the inhomogeneous ordinary dif-
ferential equation Lf(x) = g(x) in which

L = � d

dx

✓
p(x)

d

dx

◆
+ q(x) (6.412)

is formally self adjoint. We’ll build a Green’s function from two solutions u
and v of the homogeneous equation Lu(x) = Lv(x) = 0 as

G(x, y) =
1

A
[✓(x� y)u(y)v(x) + ✓(y � x)u(x)v(y)] (6.413)

in which ✓(x) = (x + |x|)/(2|x|) is the Heaviside step function (Oliver
Heaviside 1850–1925), and A is a constant which we’ll presently identify.
We’ll show that the expression

f(x) =

Z b

a
G(x, y) g(y) dy =

v(x)

A

Z x

a
u(y) g(y) dy+

u(x)

A

Z b

x
v(y) g(y) dy

solves our inhomogeneous equation. Di↵erentiating, we find after a cancel-
lation

f 0(x) =
v0(x)

A

Z x

a
u(y) g(y) dy+

u0(x)

A

Z b

x
v(y) g(y) dy. (6.414)
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Di↵erentiating again, we have

f 00(x) =
v00(x)

A

Z x

a
u(y) g(y) dy+

u00(x)

A

Z b

x
v(y) g(y) dy

+
v0(x)u(x)g(x)

A
� u0(x)v(x)g(x)

A

=
v00(x)

A

Z x

a
u(y) g(y) dy+

u00(x)

A

Z b

x
v(y) g(y) dy

+
W (x)

A
g(x) (6.415)

in which W (x) is the wronskian W (x) = u(x)v0(x) � u0(x)v(x). The result
(6.266) for the wronskian of two linearly independent solutions of a self-
adjoint homogeneous ODE gives us W (x) = W (x0) p(x0)/p(x). We set the
constant A = �W (x0)p(x0) so that the last term in (6.415) is �g(x)/p(x).
It follows that

Lf(x) =
[Lv(x)]

A

Z x

a
u(y) g(y) dy+

[Lu(x)]

A

Z b

x
v(y) g(y) dy + g(x) = g(x).

(6.416)
But Lu(x) = Lv(x) = 0, so we see that f satisfies our inhomogeneous
equation Lf(x) = g(x).

Example 6.45 (Green’s functions with boundary conditions) To use the
Green’s function (6.413) with A = W (x0)p(x0) to solve the ODE (6.412)
subject to the Dirichelet boundary conditions f(a) = 0 = f(b), we choose
solutions u(x) and v(x) of the homogeneous equations Lu(x) = 0 = Lv(x)
that obey these boundary conditions, u(a) = 0 = v(b). For then our formula
f(x) =

R b
a G(x, y)g(y)dy gives

f(a) =
u(a)

A

Z b

a
v(y) g(y) dy = 0 = f(b) =

v(b)

A

Z b

a
u(y) g(y) dy. (6.417)

Similarly, to impose the Neumann boundary conditions f 0(a) = 0 = f 0(b),
we choose solutions u(x) and v(x) of the homogeneous equations Lu(x) =
0 = Lv(x) that obey these boundary conditions, u0(a) = 0 = v0(b), so that
our formula (6.414) for f 0(x) gives

f 0(a) =
u0(a)

A

Z b

a
v(y) g(y) dy = 0 = f 0(b) =

v0(b)

A

Z b

a
u(y) g(y) dy. (6.418)

For instance, to solve the equation � f 00(x)� f(x) = expx, with the mixed
boundary conditions f(�⇡) = 0 and f 0(⇡) = 0, we choose from among the
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solutions ↵ cosx + � sinx of the homogeneous equation �f 00 � f = 0, the
functions u(x) = sinx and v(x) = cosx. Substituting them into the formula
(6.413) and setting p(x) = 1 and A = �W (x0) = sin2(x0) + cos2(x0) = 1,
we find as the Green’s function

G(x, y) = ✓(x� y) sin y cosx+ ✓(y � x) sinx cos y. (6.419)

The solution then is

f(x) =

Z b

a
G(x, y) ey dy

=

Z ⇡

�⇡
[✓(x� y) sin y cosx+ ✓(y � x) sinx cos y] ey dy

= cosx

Z x

�⇡
ey sin y dy + sinx

Z ⇡

x
ey cos y dy

= � 1

2

�
e�⇡ cosx+ e⇡ sinx+ ex

�
.

(6.420)

6.40 Nonlinear Di↵erential Equations

The field of nonlinear di↵erential equations is too vast to cover here, but
we may hint at some of its features by considering some examples from
cosmology and particle physics.

The Friedmann equations of general relativity (11.413 & 11.415) for the
dimensionless scale factor a(t) of a homogeneous, isotropic universe are (in
natural units, c = 1)

ä

a
= �4⇡G

3
(⇢+ 3p) and

✓
ȧ

a

◆2

=
8⇡G

3
⇢� k

a2
(6.421)

in which k respectively is 1, 0, and �1 for closed, flat, and open geometries.
(The scale factor a(t) tells how much space has expanded or contracted
by the time t.) These equations become more tractable when the energy
density ⇢ is due to a single constituent whose pressure p is related to it by
an equation of state p = w⇢. Conservation of energy ⇢̇ = �3 ȧ(⇢ + p)/a
(11.429–11.434) then ensures (exercise 6.30) that the product ⇢ a3(1+w) is
independent of time. The constant w respectively is 1/3, 0, and �1 for


