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(Carl Neumann, 1832–1925).

6.27 Self-Adjoint Di↵erential Operators

If p(x) and q(x) are real, then the di↵erential operator
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is formally self adjoint. Such operators are interesting because if we take
any two functions u and v that are twice di↵erentiable on an interval [a, b]
and integrate v Lu twice by parts over the interval, we get
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which is Green’s formulaZ b
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(George Green, 1793–1841). Its di↵erential form is Lagrange’s identity
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(Joseph-Louis Lagrange, 1736–1813). Thus if the twice-di↵erentiable func-
tions u and v satisfy boundary conditions at x = a and x = b that make the
boundary term (6.235) vanish⇥
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then the real di↵erential operator L is symmetric
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uLv dx = (u, L v). (6.238)

A real linear operator A that acts in a real vector space and satisfies the
analogous relation (1.161)

(g,A f) = (f,A g) (6.239)


