in which $a_{0} \neq 0$ is the coefficient of the lowest power of x in $y(x)$. Differentiating, we have

$$
\begin{equation*}
y^{\prime}(x)=\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n-1} \tag{6.183}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime \prime}(x)=\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-2} \tag{6.184}
\end{equation*}
$$

When we substitute the three series (6.182-6.184) into our differential equation $x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0$, we find

$$
\begin{equation*}
\sum_{n=0}^{\infty}[(n+r)(n+r-1)+(n+r) p(x)+q(x)] a_{n} x^{n+r}=0 \tag{6.185}
\end{equation*}
$$

If this equation is to be satisfied for all x, then the coefficient of every power of x must vanish. The lowest power of x is x^{r}, and it occurs when $n=0$ with coefficient $[r(r-1+p(0))+q(0)] a_{0}$. Thus since $a_{0} \neq 0$, we have

$$
\begin{equation*}
r(r-1+p(0))+q(0)=0 . \tag{6.186}
\end{equation*}
$$

This quadratic indicial equation has two roots r_{1} and r_{2}.
To analyze higher powers of x, we introduce the notation

$$
\begin{equation*}
p(x)=\sum_{j=0}^{\infty} p_{j} x^{j} \quad \text { and } \quad q(x)=\sum_{j=0}^{\infty} q_{j} x^{j} \tag{6.187}
\end{equation*}
$$

in which $p_{0}=p(0)$ and $q_{0}=q(0)$. The requirement (exercise 6.16) that the coefficient of x^{r+k} vanish gives us a recurrence relation

$$
\begin{equation*}
a_{k}=-\left[\frac{1}{(r+k)\left(r+k-1+p_{0}\right)+q_{0}}\right] \sum_{j=0}^{k-1}\left[(j+r) p_{k-j}+q_{k-j}\right] a_{j} \tag{6.188}
\end{equation*}
$$

that expresses a_{k} in terms of $a_{0}, a_{1}, \ldots a_{k-1}$. When $p(x)$ and $q(x)$ are polynomials of low degree, these equations become much simpler.
Example 6.28 (Sines and Cosines) To apply Frobenius's method the ODE $y^{\prime \prime}+\omega^{2} y=0$, we first write it in the form $x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0$ in which $p(x)=0$ and $q(x)=\omega^{2} x^{2}$. So both $p(0)=p_{0}=0$ and $q(0)=q_{0}=0$, and the indicial equation (6.186) is $r(r-1)=0$ with roots $r_{1}=0$ and $r_{2}=1$.

We first set $r=r_{1}=0$. Since the p 's and q 's vanish except for $q_{2}=\omega^{2}$, the recurrence relation (6.188) is $a_{k}=-q_{2} a_{k-2} / k(k-1)=-\omega^{2} a_{k-2} / k(k-1)$. Thus $a_{2}=-\omega^{2} a_{0} / 2$, and $a_{2 n}=(-1)^{n} \omega^{2 n} a_{0} /(2 n)$!. The recurrence relation (6.188) gives no information about a_{1}, so to find the simplest solution, we
set $a_{1}=0$. The recurrence relation $a_{k}=-\omega^{2} a_{k-2} / k(k-1)$ then makes all the terms $a_{2 n+1}$ of odd index vanish. Our solution for the first root $r_{1}=0$ then is

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0} \sum_{n=0}^{\infty}(-1)^{n} \frac{(\omega x)^{2 n}}{(2 n)!}=a_{0} \cos \omega x . \tag{6.189}
\end{equation*}
$$

Similarly, the recurrence relation (6.188) for the second root $r_{2}=1$ is $a_{k}=-\omega^{2} a_{k-2} / k(k+1)$, so that $a_{2 n}=(-1)^{n} \omega^{2 n} a_{0} /(2 n+1)$!, and we again set all the terms of odd index equal to zero. Thus we have

$$
\begin{equation*}
y(x)=x \sum_{n=0}^{\infty} a_{n} x^{n}=\frac{a_{0}}{\omega} \sum_{n=0}^{\infty}(-1)^{n} \frac{(\omega x)^{2 n+1}}{(2 n+1)!}=\frac{a_{0}}{\omega} \sin \omega x \tag{6.190}
\end{equation*}
$$

as our solution for the second root $r_{2}=1$.
Frobenius's method sometimes shows that solutions exist only when a parameter in the ODE assumes a special value called an eigenvalue.

Example 6.29 (Legendre's Equation) If one rewrites Legendre's equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0$ as $x^{2} y^{\prime \prime}+x p y^{\prime}+q y=0$, then one finds $p(x)=-2 x^{2} /\left(1-x^{2}\right)$ and $q(x)=x^{2} \lambda /\left(1-x^{2}\right)$, which are analytic but not polynomials. In this case, it is simpler to substitute the expansions (6.1826.184) directly into Legendre's equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0$. We then find

$$
\sum_{n=0}^{\infty}\left[(n+r)(n+r-1)\left(1-x^{2}\right) x^{n+r-2}-2(n+r) x^{n+r}+\lambda x^{n+r}\right] a_{n}=0
$$

The coefficient of the lowest power of x is $r(r-1) a_{0}$, and so the indicial equation is $r(r-1)=0$. For $r=0$, we shift the index n on the term $n(n-1) x^{n-2} a_{n}$ to $n=j+2$ and replace n by j in the other terms:

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left\{(j+2)(j+1) a_{j+2}-[j(j-1)+2 j-\lambda] a_{j}\right\} x^{j}=0 . \tag{6.191}
\end{equation*}
$$

Since the coefficient of x^{j} must vanish, we get the recursion relation

$$
\begin{equation*}
a_{j+2}=\frac{j(j+1)-\lambda}{(j+2)(j+1)} a_{j} \tag{6.192}
\end{equation*}
$$

which for big j says that $a_{j+2} \approx a_{j}$. Thus the series (6.182) does not converge for $|x| \geq 1$ unless $\lambda=j(j+1)$ for some integer j in which case the series (6.182) is a Legendre polynomial (chapter 8).

