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in which a
0

6= 0 is the coe�cient of the lowest power of x in y(x). Di↵eren-
tiating, we have

y0(x) =
1X
n=0

(r + n) an x
r+n�1 (6.183)

and

y00(x) =
1X
n=0

(r + n)(r + n� 1) an x
r+n�2. (6.184)

When we substitute the three series (6.182–6.184) into our di↵erential equa-
tion x2y00 + xp(x)y0 + q(x)y = 0, we find

1X
n=0

[(n+ r)(n+ r � 1) + (n+ r)p(x) + q(x)] anx
n+r = 0. (6.185)

If this equation is to be satisfied for all x, then the coe�cient of every power
of x must vanish. The lowest power of x is xr, and it occurs when n = 0
with coe�cient [r(r � 1 + p(0)) + q(0)] a

0

. Thus since a
0

6= 0, we have

r(r � 1 + p(0)) + q(0) = 0. (6.186)

This quadratic indicial equation has two roots r
1

and r
2

.
To analyze higher powers of x, we introduce the notation

p(x) =
1X
j=0

pjx
j and q(x) =

1X
j=0

qjx
j (6.187)

in which p
0

= p(0) and q
0

= q(0). The requirement (exercise 6.16) that the
coe�cient of xr+k vanish gives us a recurrence relation

ak = �


1

(r + k)(r + k � 1 + p
0

) + q
0

� k�1X
j=0

[(j + r)pk�j + qk�j ] aj (6.188)

that expresses ak in terms of a
0

, a
1

, . . . ak�1

. When p(x) and q(x) are
polynomials of low degree, these equations become much simpler.

Example 6.28 (Sines and Cosines) To apply Frobenius’s method the ODE
y00+!2y = 0, we first write it in the form x2y00+xp(x)y0+q(x)y = 0 in which
p(x) = 0 and q(x) = !2x2. So both p(0) = p

0

= 0 and q(0) = q
0

= 0, and
the indicial equation (6.186) is r(r � 1) = 0 with roots r

1

= 0 and r
2

= 1.
We first set r = r

1

= 0. Since the p’s and q’s vanish except for q
2

= !2, the
recurrence relation (6.188) is ak = �q

2

ak�2

/k(k � 1) = �!2ak�2

/k(k � 1).
Thus a

2

= �!2a
0

/2, and a
2n = (�1)n!2na

0

/(2n)!. The recurrence relation
(6.188) gives no information about a

1

, so to find the simplest solution, we
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set a
1

= 0. The recurrence relation ak = �!2ak�2

/k(k � 1) then makes all
the terms a

2n+1

of odd index vanish. Our solution for the first root r
1

= 0
then is

y(x) =
1X
n=0

an x
n = a

0

1X
n=0

(�1)n
(!x)2n

(2n)!
= a

0

cos!x. (6.189)

Similarly, the recurrence relation (6.188) for the second root r
2

= 1 is
ak = �!2ak�2

/k(k + 1), so that a
2n = (�1)n!2na

0

/(2n+ 1)!, and we again
set all the terms of odd index equal to zero. Thus we have

y(x) = x
1X
n=0

an x
n =

a
0

!

1X
n=0

(�1)n
(!x)2n+1

(2n+ 1)!
=

a
0

!
sin!x (6.190)

as our solution for the second root r
2

= 1.

Frobenius’s method sometimes shows that solutions exist only when a
parameter in the ODE assumes a special value called an eigenvalue.

Example 6.29 (Legendre’s Equation) If one rewrites Legendre’s equa-
tion (1 � x2)y00 � 2xy0 + �y = 0 as x2y00 + xpy0 + qy = 0, then one finds
p(x) = �2x2/(1� x2) and q(x) = x2�/(1� x2), which are analytic but not
polynomials. In this case, it is simpler to substitute the expansions (6.182–
6.184) directly into Legendre’s equation (1�x2)y00�2xy0+�y = 0. We then
find

1X
n=0

⇥
(n+ r)(n+ r � 1)(1� x2)xn+r�2 � 2(n+ r)xn+r + �xn+r

⇤
an = 0.

The coe�cient of the lowest power of x is r(r � 1)a
0

, and so the indicial
equation is r(r � 1) = 0. For r = 0, we shift the index n on the term
n(n� 1)xn�2an to n = j + 2 and replace n by j in the other terms:

1X
j=0

{(j + 2)(j + 1) aj+2

� [j(j � 1) + 2j � �] aj}xj = 0. (6.191)

Since the coe�cient of xj must vanish, we get the recursion relation

aj+2

=
j(j + 1)� �

(j + 2)(j + 1)
aj (6.192)

which for big j says that aj+2

⇡ aj . Thus the series (6.182) does not converge
for |x| � 1 unless � = j(j + 1) for some integer j in which case the series
(6.182) is a Legendre polynomial (chapter 8).


