(6.150) was linear in y. So we could set $P=\alpha(r y-s)$ and $Q=\alpha$. When P and Q are more complicated, integrating factors are harder to find or nonexistent.

Example 6.23 (Bodies Falling in Air) The downward speed v of a mass m in a gravitational field of constant acceleration g is described by the inhomogeneous first-order ODE $m v_{t}=m g-b v$ in which b represents air resistance. This equation is like (6.150) but with t instead of x as the independent variable, $r=b / m$, and $s=g$. Thus by (6.157), its solution is

$$
\begin{equation*}
v(t)=\frac{m g}{b}+\left(v(0)-\frac{m g}{b}\right) e^{-b t / m} . \tag{6.158}
\end{equation*}
$$

The terminal speed $m g / b$ is nearly $200 \mathrm{~km} / \mathrm{h}$ for a falling man. A diving Peregrine falcon can exceed $320 \mathrm{~km} / \mathrm{h}$; so can a falling bullet. But mice can fall down mine shafts and run off unhurt, and insects and birds can fly.

If the falling bodies are microscopic, a statistical model is appropriate. The potential energy of a mass m at height h is $V=m g h$. The heights of particles at temperature T K follow Boltzmann's distribution (1.345)

$$
\begin{equation*}
P(h)=P(0) e^{-m g h / k T} \tag{6.159}
\end{equation*}
$$

in which $k=1.3806504 \times 10^{-23} \mathrm{~J} / \mathrm{K}=8.617343 \times 10^{-5} \mathrm{eV} / \mathrm{K}$ is his constant. The probability depends exponentially upon the mass m and drops by a factor of e with the scale height $S=k T / m g$, which can be a few kilometers for a small molecule.

Example 6.24 (R-C Circuit) The capacitance C of a capacitor is the charge Q it holds (on each plate) divided by the applied voltage V, that is, $C=Q / V$. The current I through the capacitor is the time derivative of the charge $I=\dot{Q}=C \dot{V}$. The voltage across a resistor of $R \Omega$ (Ohms) through which a current I flows is $V=I R$ by Ohm's law. So if a timedependent voltage $V(t)$ is applied to a capacitor in series with a resistor, then $V(t)=Q / C+I R$. The current I therefore obeys the first-order differential equation

$$
\begin{equation*}
\dot{I}+I / R C=\dot{V} / R \tag{6.160}
\end{equation*}
$$

or (6.150) with $x \rightarrow t, y \rightarrow I, r \rightarrow 1 / R C$, and $s \rightarrow \dot{V} / R$. Since r is a constant, the integrating factor $\alpha(x) \rightarrow \alpha(t)$ is

$$
\begin{equation*}
\alpha(t)=\alpha\left(t_{0}\right) e^{\left(t-t_{0}\right) / R C} \tag{6.161}
\end{equation*}
$$

Our general solution (6.157) of linear first-order ODEs gives us the expres-

