Example 6.6 (The Helmholtz Equation in Three Dimensions) In three dimensions and in rectangular coordinates $\boldsymbol{r}=(x, y, z)$, the function $f(x, y, z)=X(x) Y(y) Z(z)$ is a solution of the ODE $-\triangle f=k^{2} f$ as long as X, Y, and Z satisfy $-X_{a}^{\prime \prime}=a^{2} X_{a},-Y_{b}^{\prime \prime}=b^{2} Y_{b}$, and $-Z_{c}^{\prime \prime}=c^{2} Z_{c}$ with $a^{2}+b^{2}+c^{2}=k^{2}$. We set $X_{a}(x)=\alpha \sin a x+\beta \cos a x$ and so forth. Arbitrary linear combinations of the products $X_{a} Y_{b} Z_{c}$ also are solutions of Helmholtz's equation $-\triangle f=k^{2} f$ as long as $a^{2}+b^{2}+c^{2}=k^{2}$.

In cylindrical coordinates (ρ, ϕ, z), the laplacian (6.34) is

$$
\begin{equation*}
\nabla \cdot \nabla f=\Delta f=\frac{1}{\rho}\left[\left(\rho f_{, \rho}\right)_{, \rho}+\frac{1}{\rho} f_{, \phi \phi}+\rho f_{, z z}\right] \tag{6.49}
\end{equation*}
$$

and so if we substitute $f(\rho, \phi, z)=\mathrm{P}(\rho) \Phi(\phi) Z(z)$ into Helmholtz's equation $-\triangle f=\alpha^{2} f$ and multiply both sides by $-\rho^{2} / \mathrm{P} \Phi Z$, then we get

$$
\begin{equation*}
\frac{\rho^{2}}{f} \Delta f=\frac{\rho^{2} \mathrm{P}^{\prime \prime}+\rho \mathrm{P}^{\prime}}{\mathrm{P}}+\frac{\Phi^{\prime \prime}}{\Phi}+\rho^{2} \frac{Z^{\prime \prime}}{Z}=-\alpha^{2} \rho^{2} \tag{6.50}
\end{equation*}
$$

If we set $Z_{k}(z)=e^{k z}$, then this equation becomes (6.46) with k^{2} replaced by $\alpha^{2}+k^{2}$. Its solution then is

$$
\begin{equation*}
f(\rho, \phi, z)=J_{n}\left(\sqrt{\alpha^{2}+k^{2}} \rho\right) e^{i n \phi} e^{k z} \tag{6.51}
\end{equation*}
$$

in which n must be an integer if the solution is to apply to the full range of ϕ from 0 to 2π. The case in which $\alpha=0$ corresponds to Laplace's equation with solution $f(\rho, \phi, z)=J_{n}(k \rho) e^{i n \phi} e^{k z}$. We could have required Z to satisfy $Z^{\prime \prime}=-k^{2} Z$. The solution (6.51) then would be

$$
\begin{equation*}
f(\rho, \phi, z)=J_{n}\left(\sqrt{\alpha^{2}-k^{2}} \rho\right) e^{i n \phi} e^{i k z} \tag{6.52}
\end{equation*}
$$

But if $\alpha^{2}-k^{2}<0$, we write this solution in terms of the modified Bessel function $I_{n}(x)=i^{-n} J_{n}(i x)$ (section 9.3) as

$$
\begin{equation*}
f(\rho, \phi, z)=I_{n}\left(\sqrt{k^{2}-\alpha^{2}} \rho\right) e^{i n \phi} e^{i k z} \tag{6.53}
\end{equation*}
$$

In spherical coordinates, the laplacian (6.35) is

$$
\begin{equation*}
\triangle f=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}} \tag{6.54}
\end{equation*}
$$

in which the first term is $r^{-1}(r f)_{, r r}$. If we set $f(r, \theta, \phi)=R(r) \Theta(\theta) \Phi_{m}(\phi)$ where $\Phi_{m}=e^{i m \phi}$ and multiply both sides of the Helmholtz equation $-\triangle f=$ $k^{2} f$ by $-r^{2} / R \Theta \Phi$, then we get

$$
\begin{equation*}
\frac{\left(r^{2} R^{\prime}\right)^{\prime}}{R}+\frac{\left(\sin \theta \Theta^{\prime}\right)^{\prime}}{\sin \theta \Theta}-\frac{m^{2}}{\sin ^{2} \theta}=-k^{2} r^{2} \tag{6.55}
\end{equation*}
$$

The first term is a function of r, the next two terms are functions of θ, and the last term is a constant. So we set the r-dependent terms equal to a constant $\ell(\ell+1)-k^{2}$ and the θ-dependent terms equal to $-\ell(\ell+1)$, and we require the associated Legendre function $\Theta_{\ell, m}(\theta)$ to satisfy (8.91)

$$
\begin{equation*}
\left(\sin \theta \Theta_{\ell, m}^{\prime}\right)^{\prime} / \sin \theta+\left[\ell(\ell+1)-m^{2} / \sin ^{2} \theta\right] \Theta_{\ell, m}=0 \tag{6.56}
\end{equation*}
$$

If $\Phi(\phi)=e^{i m \phi}$ is to be single valued for $0 \leq \phi \leq 2 \pi$, then the parameter m must be an integer. The constant ℓ also must be an integer with $-\ell \leq m \leq \ell$ (example 6.29, section 8.12) if $\Theta_{\ell, m}(\theta)$ is to be single valued and finite for $0 \leq \theta \leq \pi$. The product $f=R \Theta \Phi$ then will obey Helmholtz's equation $-\triangle f=k^{2} f$ if the radial function $R_{k, \ell}(r)=j_{\ell}(k r)$ satisfies

$$
\begin{equation*}
\left(r^{2} R_{k, \ell}^{\prime}\right)^{\prime}+\left[k^{2} r^{2}-\ell(\ell+1)\right] R_{k, \ell}=0 \tag{6.57}
\end{equation*}
$$

which it does because the spherical Bessel function $j_{\ell}(x)$ obeys Bessel's equation (9.63)

$$
\begin{equation*}
\left(x^{2} j_{\ell}^{\prime}\right)^{\prime}+\left[x^{2}-\ell(\ell+1)\right] j_{\ell}=0 \tag{6.58}
\end{equation*}
$$

In three dimensions, Helmholtz's equation separates in 11 standard coordinate systems (Morse and Feshbach, 1953, pp. 655-664).

6.6 Wave Equations

You can easily solve some of the linear homogeneous partial differential equations of electrodynamics (exercise 6.6) and quantum field theory.

Example 6.7 (The Klein-Gordon Equation) In Minkowski space, the ana\log of the laplacian in natural units $(\hbar=c=1)$ is (summing over a from 0 to 3)

$$
\begin{equation*}
\square=\partial_{a} \partial^{a}=\triangle-\frac{\partial^{2}}{\partial x^{02}}=\triangle-\frac{\partial^{2}}{\partial t^{2}} \tag{6.59}
\end{equation*}
$$

and the Klein-Gordon wave equation is

$$
\begin{equation*}
\left(\square-m^{2}\right) A(x)=\left(\triangle-\frac{\partial^{2}}{\partial t^{2}}-m^{2}\right) A(x)=0 . \tag{6.60}
\end{equation*}
$$

If we set $A(x)=B(p x)$ where $p x=p_{a} x^{a}=\boldsymbol{p} \cdot \boldsymbol{x}-p^{0} x^{0}$, then the k th partial derivative of A is p_{k} times the first derivative of B

$$
\begin{equation*}
\frac{\partial}{\partial x^{k}} A(x)=\frac{\partial}{\partial x^{k}} B(p x)=p_{k} B^{\prime}(p x) \tag{6.61}
\end{equation*}
$$

and so the Klein-Gordon equation (6.60) becomes

$$
\begin{equation*}
\left(\square-m^{2}\right) A=\left(\boldsymbol{p}^{2}-\left(p^{0}\right)^{2}\right) B^{\prime \prime}-m^{2} B=p^{2} B^{\prime \prime}-m^{2} B=0 \tag{6.62}
\end{equation*}
$$

in which $p^{2}=\boldsymbol{p}^{2}-\left(p^{0}\right)^{2}$. Thus if $B(p \cdot x)=\exp (i p \cdot x)$ so that $B^{\prime \prime}=-B$, and if the energy-momentum 4 -vector $\left(p^{0}, \boldsymbol{p}\right)$ satisfies $p^{2}+m^{2}=0$, then $A(x)$ will satisfy the Klein-Gordon equation. The condition $p^{2}+m^{2}=0$ relates the energy $p^{0}=\sqrt{\boldsymbol{p}^{2}+m^{2}}$ to the momentum \boldsymbol{p} for a particle of mass m.

Example 6.8 (Field of a Spinless Boson) The quantum field

$$
\begin{equation*}
\phi(x)=\int \frac{d^{3} p}{\sqrt{2 p^{0}(2 \pi)^{3}}}\left[a(\boldsymbol{p}) e^{i p x}+a^{\dagger}(\boldsymbol{p}) e^{-i p x}\right] \tag{6.63}
\end{equation*}
$$

describes spinless bosons of mass m. It satisfies the Klein-Gordon equation $\left(\square-m^{2}\right) \phi(x)=0$ because $p^{0}=\sqrt{\boldsymbol{p}^{2}+m^{2}}$. The operators $a(\boldsymbol{p})$ and $a^{\dagger}(\boldsymbol{p})$ respectively represent the annihilation and creation of the bosons and obey the commutation relations

$$
\begin{equation*}
\left[a(\boldsymbol{p}), a^{\dagger}\left(\boldsymbol{p}^{\prime}\right)\right]=\delta^{3}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right) \text { and }\left[a(\boldsymbol{p}), a\left(\boldsymbol{p}^{\prime}\right)\right]=\left[a^{\dagger}(\boldsymbol{p}), a^{\dagger}\left(\boldsymbol{p}^{\prime}\right)\right]=0 \tag{6.64}
\end{equation*}
$$

in units with $\hbar=c=1$. These relations make the field $\phi(x)$ and its time derivative $\dot{\phi}(y)$ satisfy the canonical equal-time commutation relations

$$
\begin{equation*}
[\phi(\boldsymbol{x}, t), \dot{\phi}(\boldsymbol{y}, t)]=i \delta^{3}(\boldsymbol{x}-\boldsymbol{y}) \text { and }[\phi(\boldsymbol{x}, t), \phi(\boldsymbol{y}, t)]=[\dot{\phi}(\boldsymbol{x}, t), \dot{\phi}(\boldsymbol{y}, t)]=0 \tag{6.65}
\end{equation*}
$$

in which the dot means time derivative.

Example 6.9 (Field of the Photon) The electromagnetic field has four components, but in the Coulomb or radiation gauge $\nabla \cdot \boldsymbol{A}(x)=0$, the component A_{0} is a function of the charge density, and the vector potential \boldsymbol{A} in the absence of charges and currents satisfies the wave equation $\square \boldsymbol{A}(x)=0$ for a spin-one massless particle. We write it as

$$
\begin{equation*}
\boldsymbol{A}(x)=\sum_{s=1}^{2} \int \frac{d^{3} p}{\sqrt{2 p^{0}(2 \pi)^{3}}}\left[\boldsymbol{e}(\boldsymbol{p}, s) a(\boldsymbol{p}, \boldsymbol{s}) e^{i p x}+\boldsymbol{e}^{*}(\boldsymbol{p}, s) a^{\dagger}(\boldsymbol{p}, \boldsymbol{s}) e^{-i p x}\right] \tag{6.66}
\end{equation*}
$$

in which the sum is over the two possible polarizations s. The energy p^{0} is equal to the modulus $|\boldsymbol{p}|$ of the momentum because the photon is massless, $p^{2}=0$. The dot-product of the polarization vectors $\boldsymbol{e}(\boldsymbol{p}, s)$ with the momentum vanishes $\boldsymbol{p} \cdot \boldsymbol{e}(\boldsymbol{p}, s)=0$ so as to respect the gauge condition

