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Example 6.6 (The Helmholtz Equation in Three Dimensions) In three
dimensions and in rectangular coordinates r = (z,y, z), the function
f(z,y,2) = X(2)Y (y)Z(z) is a solution of the ODE — Af = k%f as long
as X, Y, and Z satisfy —X! = a’X,, -V} = b*Y}, and —Z! = 3*Z,
with a? + b? + ¢ = k?. We set X,(v) = asinaz + Bcosar and so forth.
Arbitrary linear combinations of the products X, Y, Z. also are solutions of
Helmholtz’s equation — Af = k%f as long as a® + b? + ¢ = k2.
In cylindrical coordinates (p, ¢, z), the laplacian (6.34) is

N (P Y (6.49)

and so if we substitute f(p, ¢, z) = P(p) ®(¢) Z(z) into Helmholtz’s equation
— Af = a?f and multiply both sides by —p?/P ® Z, then we get
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If we set Zi(2) = €¥*, then this equation becomes (6.46) with k2 replaced
by a? + k2. Its solution then is

Fp,¢,2) = Ju(V a2 + k2p) € (6.51)

in which n must be an integer if the solution is to apply to the full range of
¢ from 0 to 27. The case in which @ = 0 corresponds to Laplace’s equation
with solution f(p, ¢, z) = Jn(kp)e™®e**. We could have required Z to satisfy
7" = —k?Z. The solution (6.51) then would be

fp,¢,2) = Ju(Va? — k2 p) €% ™2, (6.52)

But if a® — k% < 0, we write this solution in terms of the modified Bessel
function I,,(z) = i7" J,(iz) (section 9.3) as

f(p,6,2) = L(VE? — a2 p) ¥ ™=, (6.53)

In spherical coordinates, the laplacian (6.35) is
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in which the first term is = 1(rf) ... If we set f(r,0,¢) = R(r) ©(6) ®,,,(¢)
where ®,,, = ¢"™? and multiply both sides of the Helmholtz equation —A f =
k2f by —r2/RO®, then we get
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R + sinfO®  sinZh =k (6.55)
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The first term is a function of r, the next two terms are functions of 6, and
the last term is a constant. So we set the r-dependent terms equal to a
constant /(¢ + 1) — k? and the 6-dependent terms equal to —¢(¢ + 1), and
we require the associated Legendre function O,,,(0) to satisfy (8.91)

(sin06},,) /sind + [6(¢ + 1) — m?/sin’ 0] Oy, = 0. (6.56)

If ®(¢) = e™? is to be single valued for 0 < ¢ < 2, then the parameter m
must be an integer. The constant £ also must be an integer with —¢ < m </
(example 6.29, section 8.12) if ©y,,(0) is to be single valued and finite for
0 < 0 < m. The product f = RO ® then will obey Helmholtz’s equation
—Af = k*f if the radial function Ry (r) = jo(kr) satisfies

(rPRp,,) + [K*? — €6 +1)] Ryy =0 (6.57)
which it does because the spherical Bessel function j,(x) obeys Bessel’s
equation (9.63)

(2% 47) + [2* — £t + D)] o = 0. (6.58)

In three dimensions, Helmholtz’s equation separates in 11 standard coor-
dinate systems (Morse and Feshbach, 1953, pp. 655-664). O

6.6 Wave Equations

You can easily solve some of the linear homogeneous partial differential
equations of electrodynamics (exercise 6.6) and quantum field theory.

Example 6.7 (The Klein-Gordon Equation) In Minkowski space, the ana-
log of the laplacian in natural units (A = ¢ = 1) is (summing over a from 0
to 3)

o 0? 0?
0= 9,0 :A_W:A_@ (6.59)
and the Klein-Gordon wave equation is
92
(O —m?) A(z) = (A el m2> A(z) = 0. (6.60)

If we set A(x) = B(px) where pz = p,z® = p - £ —p°2°, then the kth partial
derivative of A is pg times the first derivative of B

e Aw) = = B(pa) = piB (o) (6.61)
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and so the Klein-Gordon equation (6.60) becomes
(O-m?)A=(p*— (°)*)B" —m’B = p*B" —m?B =0 (6.62)

in which p? = p? — (p")2. Thus if B(p-x) = exp(ip-x) so that B” = —B, and
if the energy-momentum 4-vector (p°, p) satisfies p? + m? = 0, then A(x)
will satisfy the Klein-Gordon equation. The condition p? +m? = 0 relates
the energy p° = 1/p? + m? to the momentum p for a particle of mass m. [

Example 6.8 (Field of a Spinless Boson) The quantum field
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= [ ——— |a(p)e™® + al(p)e " 6.63

)= | st o) +al) (6:63)
describes spinless bosons of mass m. It satisfies the Klein-Gordon equation

(D — m2) #(z) = 0 because p® = \/p% + m2. The operators a(p) and af(p)
respectively represent the annihilation and creation of the bosons and obey
the commutation relations

[a(p),a’(p')] = 8*(p — p/) and [a(p),a(p’)] = [a'(p),a’(p))] =0 (6.64)

in units with 7 = ¢ = 1. These relations make the field ¢(x) and its time
derivative ¢(y) satisfy the canonical equal-time commutation rela-

tions
[3(x,1), p(y,t)] = i6*(x —y) and [¢(,1), d(y,t)] = [d(, 1), (y,t)] =0
(6.65)
in which the dot means time derivative. O

Example 6.9 (Field of the Photon) The electromagnetic field has four
components, but in the Coulomb or radiation gauge V - A(z) = 0, the
component Ag is a function of the charge density, and the vector potential A
in the absence of charges and currents satisfies the wave equation OA(z) =0
for a spin-one massless particle. We write it as

a(p, 8) €7 + & (p, 5) al (p, 5) e~ ¥*]
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in which the sum is over the two possible polarizations s. The energy p"
is equal to the modulus |p| of the momentum because the photon is mass-
less, p> = 0. The dot-product of the polarization vectors e(p, s) with the
momentum vanishes p - e(p,s) = 0 so as to respect the gauge condition



