V. The integral of the divergence $\nabla \cdot \boldsymbol{v}$ over the tiny volumes $d V$ of the tiny cubes that make up the volume V is the sum of the surface integrals $d S$ over the faces of these tiny cubes. The integrals over the interior faces cancel leaving just the surface integral over the boundary ∂V of the finite volume V. Thus we arrive at Stokes's theorem

$$
\begin{equation*}
\int_{V} \boldsymbol{\nabla} \cdot \boldsymbol{v} d V=\int_{\partial V} \boldsymbol{v} \cdot \boldsymbol{d} \boldsymbol{S} \tag{6.32}
\end{equation*}
$$

The laplacian is the divergence (6.29) of the gradient (6.26). So in orthogonal coordinates it is

$$
\begin{equation*}
\triangle f=\boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \boldsymbol{f}=\frac{1}{h_{1} h_{2} h_{3}}\left[\sum_{k=1}^{3} \frac{\partial}{\partial u_{k}}\left(\frac{h_{1} h_{2} h_{3}}{h_{k}^{2}} \frac{\partial f}{\partial u_{k}}\right)\right] \tag{6.33}
\end{equation*}
$$

Thus in cylindrical coordinates, the laplacian is

$$
\begin{equation*}
\triangle f=\frac{1}{\rho}\left[\frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho} \frac{\partial^{2} f}{\partial \phi^{2}}+\rho \frac{\partial^{2} f}{\partial z^{2}}\right]=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \tag{6.34}
\end{equation*}
$$

and in spherical coordinates it is

$$
\begin{align*}
\triangle f & =\frac{1}{r^{2} \sin \theta}\left[\frac{\partial}{\partial r}\left(r^{2} \sin \theta \frac{\partial f}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{\partial}{\partial \phi}\left(\frac{1}{\sin \theta} \frac{\partial f}{\partial \phi}\right)\right] \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}} \tag{6.35}
\end{align*}
$$

The area $\boldsymbol{d} \boldsymbol{S}$ of a tiny rectangle $d S$ whose sides are the tiny perpendicular vectors $h_{i} \hat{\boldsymbol{e}}_{i} d u_{i}$ and $h_{j} \hat{\boldsymbol{e}}_{j} d u_{j}$ (no sum) is their cross-product

$$
\begin{equation*}
\boldsymbol{d} \boldsymbol{S}=h_{i} \hat{\boldsymbol{e}}_{i} d u_{i} \times h_{j} \hat{\boldsymbol{e}}_{j} d u_{j}=\hat{\boldsymbol{e}}_{k} h_{i} h_{j} d u_{i} d u_{j} \tag{6.36}
\end{equation*}
$$

in which the perpendicular unit vectors $\hat{\boldsymbol{e}}_{i}, \hat{\boldsymbol{e}}_{j}$, and $\hat{\boldsymbol{e}}_{k}$ obey the right-hand rule. The dot-product of this area with the curl of a vector \boldsymbol{v}, which is $(\boldsymbol{\nabla} \times \boldsymbol{v}) \cdot d S=(\boldsymbol{\nabla} \times \boldsymbol{v})_{k} h_{i} h_{j} d u_{i} d u_{j}$, is the line integral $d L$ of \boldsymbol{v} along the boundary $\partial d S$ of the rectangle

$$
\begin{equation*}
(\boldsymbol{\nabla} \times \boldsymbol{v})_{k} h_{i} h_{j} d u_{i} d u_{j}=\left[\partial_{i}\left(h_{j} v_{j}\right)-\partial_{j}\left(h_{i} v_{i}\right)\right] d u_{i} d u_{j} \tag{6.37}
\end{equation*}
$$

Thus, the k th component of the curl is

$$
\begin{equation*}
(\nabla \times v)_{k}=\frac{1}{h_{i} h_{j}}\left(\frac{\partial\left(h_{j} v_{j}\right)}{\partial u_{i}}-\frac{\partial\left(h_{i} v_{i}\right)}{\partial u_{j}}\right) \quad \text { (no sum) } \tag{6.38}
\end{equation*}
$$

In terms of the Levi-Civita symbol $\epsilon_{i j k}$, which is totally antisymmetric with

