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V . The integral of the divergence r · v over the tiny volumes dV of the
tiny cubes that make up the volume V is the sum of the surface integrals
dS over the faces of these tiny cubes. The integrals over the interior faces
cancel leaving just the surface integral over the boundary @V of the finite
volume V . Thus we arrive at Stokes’s theoremZ

V
r · v dV =

Z
@V

v · dS. (6.32)

The laplacian is the divergence (6.29) of the gradient (6.26). So in or-
thogonal coordinates it is
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Thus in cylindrical coordinates, the laplacian is
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and in spherical coordinates it is
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The area dS of a tiny rectangle dS whose sides are the tiny perpendicular
vectors hiêidui and hj êjduj (no sum) is their cross-product

dS = hiêidui ⇥ hj êjduj = êk hihj duiduj (6.36)

in which the perpendicular unit vectors êi, êj , and êk obey the right-hand
rule. The dot-product of this area with the curl of a vector v, which is
(r ⇥ v) · dS = (r ⇥ v)k hihj duiduj , is the line integral dL of v along the
boundary @dS of the rectangle

(r ⇥ v)k hihjduiduj = [@i(hjvj)� @j(hivi)] duiduj . (6.37)

Thus, the kth component of the curl is

(r⇥ v)k =
1

hihj

✓
@(hjvj)

@ui
� @(hivi)

@uj

◆
(no sum). (6.38)

In terms of the Levi-Civita symbol ✏ijk, which is totally antisymmetric with


