in which x stands for x_{1}, \ldots, x_{k} is a linear partial differential equation of order $n=n_{1}+\cdots+n_{k}$ in the k variables x_{1}, \ldots, x_{k}. (A partial differential equation is a whole differential equation that has partial derivatives.)
Linear combinations of solutions of a linear homogeneous partial differential equation also are solutions of the equation. So if f_{1} and f_{2} are solutions of $L f=0$, and a_{1} and a_{2} are constants, then $f=a_{1} f_{1}+a_{2} f_{2}$ is a solution since $L f=a_{1} L f_{1}+a_{2} L f_{2}=0$. Additivity of solutions is a property of all linear homogeneous differential equations, whether ordinary or partial.

The general solution $f(x)=f\left(x_{1}, \ldots, x_{k}\right)$ of a linear homogeneous partial differential equation (6.15) is a sum $f(x)=\sum_{j} a_{j} f_{j}(x)$ over a complete set of solutions $f_{j}(x)$ of the equation with arbitrary coefficients a_{j}. A linear partial differential equation $L f_{i}(x)=s(x)$ with a source term $s(x)=s\left(x_{1}, \ldots, x_{k}\right)$ is an inhomogeneous linear partial differential equations because of the added source term.

Just as with ordinary differential equations, the difference $f_{i 1}-f_{i 2}$ of two solutions of the inhomogeneous linear partial differential equation $L f_{i}=s$ is a solution of the associated homogeneous equation $L f=0$ (6.15)

$$
\begin{equation*}
L\left[f_{i 1}(x)-f_{i 2}(x)\right]=s(x)-s(x)=0 . \tag{6.16}
\end{equation*}
$$

So we can expand this difference in terms of the complete set of solutions f_{j} of the homogeneous linear partial differential equation $L f=0$

$$
\begin{equation*}
f_{i 1}(x)-f_{i 2}(x)=\sum_{j} a_{j} f_{j}(x) . \tag{6.17}
\end{equation*}
$$

Thus the general solution of the inhomogeneous linear partial differential equation $L f=s$ is the sum of a particular solution $f_{i 2}$ of $L f=s$ and the general solution $\sum_{j} a_{j} f_{j}$ of the associated homogeneous equation $L f=0$

$$
\begin{equation*}
f_{i 1}(x)=f_{i 2}(x)+\sum_{j} a_{j} f_{j}(x) . \tag{6.18}
\end{equation*}
$$

6.3 Notation for Derivatives

One often uses primes or dots to denote derivatives as in

$$
f^{\prime}=\frac{d f}{d x} \quad \text { or } \quad f^{\prime \prime}=\frac{d^{2} f}{d x^{2}} \quad \text { and } \quad \dot{f}=\frac{d f}{d t} \quad \text { or } \quad \ddot{f}=\frac{d^{2} f}{d t^{2}} .
$$

For higher or partial derivatives, one sometimes uses superscripts

$$
\begin{equation*}
f^{(k)}=\frac{d^{k} f}{d x^{k}} \quad \text { and } \quad f^{(k, \ell)}=\frac{\partial^{k+\ell} f}{\partial x^{k} \partial y^{\ell}} \tag{6.19}
\end{equation*}
$$

