5.12 Evaluate the contour integral of the function $f(z)=\sin w z /(z-5)^{3}$ along the curve $z=6+4(\cos t+i \sin t)$ for $0 \leq t \leq 2 \pi$.
5.13 Evaluate the contour integral of the function $f(z)=\sin w z /(z-5)^{3}$ along the curve $z=-6+4(\cos t+i \sin t)$ for $0 \leq t \leq 2 \pi$.
5.14 Is the function $f(x, y)=x^{2}+i y^{2}$ analytic?
5.15 Is the function $f(x, y)=x^{3}-3 x y^{2}+3 i x^{2} y-i y^{3}$ analytic? Is the function $x^{3}-3 x y^{2}$ harmonic? Does it have a minimum or a maximum? If so, what are they?
5.16 Is the function $f(x, y)=x^{2}+y^{2}+i\left(x^{2}+y^{2}\right)$ analytic? Is $x^{2}+y^{2}$ a harmonic function? What is its minimum, if it has one?
5.17 Derive the first three nonzero terms of the Laurent series for $f(z)=$ $1 /\left(e^{z}-1\right)$ about $z=0$.
5.18 Assume that a function $g(z)$ is meromorphic in R and has a Laurent series (5.97) about a point $w \in R$. Show that as $z \rightarrow w$, the ratio $g^{\prime}(z) / g(z)$ becomes (5.95).
5.19 Find the poles and residues of the functions $1 / \sin z$ and $1 / \cos z$.
5.20 Derive the integral formula (5.122) from (5.121).
5.21 Show that if $\operatorname{Re} w<0$, then for arbitrary complex z

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{w(x+z)^{2}} d x=\sqrt{\frac{\pi}{-w}} . \tag{5.347}
\end{equation*}
$$

5.22 Use a ghost contour to evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x
$$

Show your work; do not just quote the result of a commercial math program.
5.23 For $a>0$ and $b^{2}-4 a c<0$, use a ghost contour to do the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d x}{a x^{2}+b x+c} \tag{5.348}
\end{equation*}
$$

5.24 Show that

$$
\begin{equation*}
\int_{0}^{\infty} \cos a x e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi} e^{-a^{2} / 4} \tag{5.349}
\end{equation*}
$$

5.25 Show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d x}{1+x^{4}}=\frac{\pi}{\sqrt{2}} . \tag{5.350}
\end{equation*}
$$

5.26 Evaluate the integral

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\cos x}{1+x^{4}} d x \tag{5.351}
\end{equation*}
$$

5.27 Show that the Yukawa Green's function (5.151) reproduces the Yukawa potential (5.141) when $n=3$. Use $K_{1 / 2}(x)=\sqrt{\pi / 2 x} e^{-x}$ (9.99).
5.28 Derive the two explicit formulas (5.188) and (5.189) for the square-root of a complex number.
5.29 What is $(-i)^{i}$? What is the most general value of this expression?
5.30 Use the indefinite integral (5.223) to derive the principal-part formula (5.224).
5.31 The Bessel function $J_{n}(x)$ is given by the integral

$$
\begin{equation*}
J_{n}(x)=\frac{1}{2 \pi i} \oint_{C} e^{(x / 2)(z-1 / z)} \frac{d z}{z^{n+1}} \tag{5.352}
\end{equation*}
$$

along a counter-clockwise contour about the origin. Find the generating function for these Bessel functions, that is, the function $G(x, z)$ whose Laurent series has the $J_{n}(x)$'s as coefficients

$$
\begin{equation*}
G(x, z)=\sum_{n=-\infty}^{\infty} J_{n}(x) z^{n} . \tag{5.353}
\end{equation*}
$$

5.32 Show that the Heaviside function $\theta(y)=(y+|y|) /(2|y|)$ is given by the integral

$$
\begin{equation*}
\theta(y)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} e^{i y x} \frac{d x}{x-i \epsilon} \tag{5.354}
\end{equation*}
$$

in which ϵ is an infinitesimal positive number.
5.33 Show that the integral of $\exp (i k) / k$ along the contour from $k=L$ to $k=L+i H$ and then to $k=-L+i H$ and then down to $k=-L$ vanishes in the double limit $L \rightarrow \infty$ and $H \rightarrow \infty$.
5.34 Use a ghost contour and a cut to evaluate the integral

$$
\begin{equation*}
I=\int_{-1}^{1} \frac{d x}{\left(x^{2}+1\right) \sqrt{1-x^{2}}} \tag{5.355}
\end{equation*}
$$

by imitating example 5.30. Be careful when picking up the poles at $z= \pm i$. If necessary, use the explicit square-root formulas (5.188) and (5.189).
5.35 Redo the previous exercise (5.34) by defining the square roots so that the cuts run from $-\infty$ to -1 and from 1 to ∞. Take advantage of the evenness of the integrand and integrate on a contour that is slightly above the whole real axis. Then add a ghost contour around the upper half plane.
5.36 Show that if u is even and v is odd, then the Hilbert transforms (5.265) imply (5.267).

