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T (z) are defined by its Laurent series
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and the inverse relation
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Thus the commutator of two modes involves two loop integrals
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which we may deform as long as we cross no poles. Let’s hold w fixed and
deform the z loop so as to keep the T ’s radially ordered when z is near
w as in Fig. 5.10. The operator-product expansion of the radially ordered
product R{T (z)T (w)} is
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in which the prime means derivative, c is a constant, and the dots denote
terms that are analytic in z and w. The commutator introduces a minus sign
that cancels most of the two contour integrals and converts what remains
into an integral along a tiny circle Cw about the point w as in Fig. 5.10
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After doing the z-integral, which is left as a homework exercise (5.43), one
may use the Laurent series (5.336) for T (w) to do the w-integral, which
one may choose to be along a tiny circle about w = 0, and so find the
commutator

[Lm, Ln] = (m� n)Lm+n +
c
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of the Virasoro algebra.

Exercises

5.1 Compute the two limits (5.6) and (5.7) of example 5.2 but for the
function f(x, y) = x2 � y2 + 2ixy. Do the limits now agree? Explain.

5.2 Show that if f(z) is analytic in a disk, then the integral of f(z) around
a tiny (isosceles) triangle of side ✏ ⌧ 1 inside the disk is zero to order
✏2.


