$T(z)$ are defined by its Laurent series

$$
\begin{equation*}
T(z)=\sum_{n=-\infty}^{\infty} \frac{L_{n}}{z^{n+2}} \tag{5.336}
\end{equation*}
$$

and the inverse relation

$$
\begin{equation*}
L_{n}=\frac{1}{2 \pi i} \oint z^{n+1} T(z) d z \tag{5.337}
\end{equation*}
$$

Thus the commutator of two modes involves two loop integrals

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=\left[\frac{1}{2 \pi i} \oint z^{m+1} T(z) d z, \frac{1}{2 \pi i} \oint w^{n+1} T(w) d w\right] \tag{5.338}
\end{equation*}
$$

which we may deform as long as we cross no poles. Let's hold w fixed and deform the z loop so as to keep the T 's radially ordered when z is near w as in Fig. 5.10. The operator-product expansion of the radially ordered product $\mathcal{R}\{T(z) T(w)\}$ is

$$
\begin{equation*}
\mathcal{R}\{T(z) T(w)\}=\frac{c / 2}{(z-w)^{4}}+\frac{2}{(z-w)^{2}} T(w)+\frac{1}{z-w} T^{\prime}(w)+\ldots \tag{5.339}
\end{equation*}
$$

in which the prime means derivative, c is a constant, and the dots denote terms that are analytic in z and w. The commutator introduces a minus sign that cancels most of the two contour integrals and converts what remains into an integral along a tiny circle C_{w} about the point w as in Fig. 5.10

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=\oint \frac{d w}{2 \pi i} w^{n+1} \oint_{C_{w}} \frac{d z}{2 \pi i} z^{m+1}\left[\frac{c / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{T^{\prime}(w)}{z-w}\right] \tag{5.340}
\end{equation*}
$$

After doing the z-integral, which is left as a homework exercise (5.43), one may use the Laurent series (5.336) for $T(w)$ to do the w-integral, which one may choose to be along a tiny circle about $w=0$, and so find the commutator

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m+n, 0} \tag{5.341}
\end{equation*}
$$

of the Virasoro algebra.

Exercises

5.1 Compute the two limits (5.6) and (5.7) of example 5.2 but for the function $f(x, y)=x^{2}-y^{2}+2 i x y$. Do the limits now agree? Explain.
5.2 Show that if $f(z)$ is analytic in a disk, then the integral of $f(z)$ around a tiny (isosceles) triangle of side $\epsilon \ll 1$ inside the disk is zero to order ϵ^{2}.

