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If we use �E for the current density J and E(t) = e�i!tE for the electric
field, then Maxwell’s equation r ⇥ B = µJ + ✏µĖ becomes
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and reveals the squared index of refraction as
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The imaginary part of n2 represents the scattering of light mainly by elec-
trons. At high frequencies in nonmagnetic materials n2(!) ! 1, and so
Kramers and Kronig applied the Hilbert-transform relations (5.267) to the
function n2(!)� 1 in order to satisfy condition (5.255). Their relations are
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What Kramers and Kronig actually wrote was slightly di↵erent from these
dispersion relations (5.270 & 5.271). H. A. Lorentz had shown that the index
of refraction n(!) is related to the forward scattering amplitude f(!) for the
scattering of light by a density N of scatterers (Sakurai, 1982)
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They used this formula to infer that the real part of the index of refraction
approached unity in the limit of infinite frequency and applied the Hilbert
transform (5.267)
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The Lorentz relation (5.272) expresses the imaginary part Im[n(!)] of the
index of refraction in terms of the imaginary part of the forward scattering
amplitude f(!)

Im[n(!)] = 2⇡(c/!)2N Im[f(!)]. (5.274)

And the optical theorem relates Im[f(!)] to the total cross-section
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