is the Lorentz-invariant function $\Delta_{+}(x-y)$

$$
\begin{align*}
{\left[\phi^{+}(x), \phi^{-}(y)\right] } & =\int \frac{d^{3} p d^{3} q}{(2 \pi)^{3} 2 \sqrt{q^{0} p^{0}}} e^{i p x-i q y}\left[a(\boldsymbol{p}), a^{\dagger}(\boldsymbol{q})\right] \\
& =\int \frac{d^{3} p}{(2 \pi)^{3} 2 p^{0}} e^{i p(x-y)}=\Delta_{+}(x-y) \tag{5.247}
\end{align*}
$$

in which $p(x-y)=\boldsymbol{p} \cdot(\boldsymbol{x}-\boldsymbol{y})-p^{0}\left(x^{0}-y^{0}\right)$.
At points x that are space-like, that is, for which $x^{2}=\boldsymbol{x}^{2}-\left(x^{0}\right)^{2} \equiv r^{2}>0$, the Lorentz-invariant function $\Delta_{+}(x)$ depends only upon $r=+\sqrt{x^{2}}$ and has the value (Weinberg, 1995, p. 202)

$$
\begin{equation*}
\Delta_{+}(x)=\frac{m}{4 \pi^{2} r} K_{1}(m r) \tag{5.248}
\end{equation*}
$$

in which the Hankel function K_{1} is

$$
\begin{equation*}
K_{1}(z)=-\frac{\pi}{2}\left[J_{1}(i z)+i N_{1}(i z)\right]=\frac{1}{z}+\frac{z}{2}\left[\ln \left(\frac{z}{2}\right)+\gamma-\frac{1}{2}\right]+\ldots \tag{5.249}
\end{equation*}
$$

where J_{1} is the first Bessel function, N_{1} is the first Neumann function, and $\gamma=0.57721 \ldots$ is the Euler-Mascheroni constant.

The Feynman propagator arises most simply as the mean value in the vacuum of the time-ordered product of the fields $\phi(x)$ and $\phi(y)$

$$
\begin{equation*}
\mathcal{T}\{\phi(x) \phi(y)\} \equiv \theta\left(x^{0}-y^{0}\right) \phi(x) \phi(y)+\theta\left(y^{0}-x^{0}\right) \phi(y) \phi(x) . \tag{5.250}
\end{equation*}
$$

The operators $a(\boldsymbol{p})$ and $a^{\dagger}(\boldsymbol{p})$ respectively annihilate the vacuum ket $a(\boldsymbol{p})|0\rangle=$ 0 and bra $\langle 0| a^{\dagger}(\boldsymbol{p})=0$, and so by $(5.245 \& 5.246)$ do the positive- and negative-frequency parts of the field $\phi^{+}(z)|0\rangle=0$ and $\langle 0| \phi^{-}(z)=0$. Thus the mean value in the vacuum of the time-ordered product is

$$
\begin{align*}
\langle 0| \mathcal{T}\{\phi(x) \phi(y)\}|0\rangle= & \langle 0| \theta\left(x^{0}-y^{0}\right) \phi(x) \phi(y)+\theta\left(y^{0}-x^{0}\right) \phi(y) \phi(x)|0\rangle \\
= & \langle 0| \theta\left(x^{0}-y^{0}\right) \phi^{+}(x) \phi^{-}(y)+\theta\left(y^{0}-x^{0}\right) \phi^{+}(y) \phi^{-}(x)|0\rangle \\
= & \langle 0| \theta\left(x^{0}-y^{0}\right)\left[\phi^{+}(x), \phi^{-}(y)\right] \\
& \quad+\theta\left(y^{0}-x^{0}\right)\left[\phi^{+}(y), \phi^{-}(x)\right]|0\rangle . \tag{5.251}
\end{align*}
$$

But by (5.247), these commutators are $\Delta_{+}(x-y)$ and $\Delta_{+}(y-x)$. Thus the mean value in the vacuum of the time-ordered product

$$
\begin{align*}
\langle 0| \mathcal{T}\{\phi(x) \phi(y)\}|0\rangle & =\theta\left(x^{0}-y^{0}\right) \Delta_{+}(x-y)+\theta\left(y^{0}-x^{0}\right) \Delta_{+}(y-x) \\
& =-i \Delta_{F}(x-y) \tag{5.252}
\end{align*}
$$

is the Feynman propagator (5.241) multiplied by $-i$.

