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in the lower half plane. The delta function in the second integral then gives
/2, so that
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as stated in (3.109). O

Example 5.36 (The Feynman Propagator) Adding +ie to the denomina-
tor of a pole term of an integral formula for a function f(x) can slightly shift
the pole into the upper or lower half plane, causing the pole to contribute
if a ghost contour goes around the upper half-plane or the lower half-plane.
Such an ie can impose a boundary condition on a Green’s function.

The Feynman propagator Ap(z) is a Green’s function for the Klein-
Gordon differential operator (Weinberg, 1995, pp. 274-280)

(m? — O)Ap(z) = 6*(x) (5.230)
in which z = (2°, ) and
0? 0*
O=A—-——=A— 231
T 9(a0)? (5.231)

is the four-dimensional version of the laplacian A = V- V. Here §%(xz) is the
four-dimensional Dirac delta function (3.36)
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in which gz = q - « — ¢°2° is the Lorentz-invariant inner product of the 4-
vectors ¢ and . There are many Green’s functions that satisfy Eq.(5.230).
Feynman’s propagator Ap(z) is the one that satisfies boundary conditions
that will become evident when we analyze the effect of its de
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The quantity Eq = 1/q? + m? is the energy of a particle of mass m and
momentum q in natural units with the speed of light ¢ = 1. Using this
abbreviation and setting ¢ = ¢/2E,, we may write the denominator as
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