
5.18 Cauchy’s Principal Value 217

in the lower half plane. The delta function in the second integral then gives
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as stated in (3.109).

Example 5.36 (The Feynman Propagator) Adding ±i✏ to the denomina-
tor of a pole term of an integral formula for a function f(x) can slightly shift
the pole into the upper or lower half plane, causing the pole to contribute
if a ghost contour goes around the upper half-plane or the lower half-plane.
Such an i✏ can impose a boundary condition on a Green’s function.

The Feynman propagator �F (x) is a Green’s function for the Klein-
Gordon di↵erential operator (Weinberg, 1995, pp. 274–280)

(m2 �2)�F (x) = �4(x) (5.230)

in which x = (x0,x) and
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is the four-dimensional version of the laplacian 4 ⌘ r ·r. Here �4(x) is the
four-dimensional Dirac delta function (3.36)

�4(x) =

Z
d4q

(2⇡)4
exp[i(q · x� q0x0)] =

Z
d4q

(2⇡)4
eiqx (5.232)

in which qx = q · x � q0x0 is the Lorentz-invariant inner product of the 4-
vectors q and x. There are many Green’s functions that satisfy Eq.(5.230).
Feynman’s propagator �F (x) is the one that satisfies boundary conditions
that will become evident when we analyze the e↵ect of its i✏
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The quantity E
q

=
p
q2 +m2 is the energy of a particle of mass m and

momentum q in natural units with the speed of light c = 1. Using this
abbreviation and setting ✏0 = ✏/2Eq, we may write the denominator as
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