the interval $[-1,1]$. Let's promote x to a complex variable z, put the cut on the negative real axis, and write the square root as $\sqrt{1-x^{2}}=$ $-i \sqrt{x^{2}-1}=-i \sqrt{(z-1)(z+1)}$ so that for $x=z=i \epsilon$ we have as $\epsilon \rightarrow 0$ that $1=\sqrt{1-x^{2}}=-i \sqrt{-1}=-i i=1$. Now the function $f(z)=1 /[(z-$ $k)(-i) \sqrt{(z-1)(z+1)}]$ is analytic everywhere except along a cut on the interval $[-1,1]$ and at $z=k$. The circle $z=R e^{i \theta}$ for $0 \leq \theta \leq 2 \pi$ is a ghost contour as $R \rightarrow \infty$. If we shrink-wrap this ccw contour around the pole at $z=k$ and the interval $[-1,1]$, then we get $0=-2 I+2 \pi i /[(-i) \sqrt{k-1} \sqrt{k+1}]$ or

$$
\begin{equation*}
I=-\frac{\pi}{\sqrt{k-1} \sqrt{k+1}} . \tag{5.193}
\end{equation*}
$$

So if $k=-2$, then $I=\pi / \sqrt{3}$, while if $k=2$, then $I=-\pi / \sqrt{3}$.
Example 5.31 (Contour Integral with a Cut) Let's compute the integral

$$
\begin{equation*}
I=\int_{0}^{\infty} \frac{x^{a}}{(x+1)^{2}} d x \tag{5.194}
\end{equation*}
$$

for $-1<a<1$. We promote x to a complex variable z and put the cut on the positive real axis. Since

$$
\begin{equation*}
\lim _{|z| \rightarrow \infty} \frac{|z|^{a+1}}{|z+1|^{2}}=0 \tag{5.195}
\end{equation*}
$$

the integrand vanishes faster than $1 /|z|$, and we may add two ghost contours, \mathcal{G}_{+}counter-clockwise around the upper half-plane and \mathcal{G}_{-}counter-clockwise around the lower half-plane, as shown in Fig. 5.8.

We add a contour \mathcal{C}_{-}that runs from $-\infty$ to the double pole at $z=-1$, loops around that pole, and then runs back to $-\infty$; the two long contours along the negative real axis cancel because the cut in θ lies on the positive real axis. So the contour integral along \mathcal{C}_{-}is just the clockwise integral around the double pole which by Cauchy's integral formula (5.34) is

$$
\begin{equation*}
\oint_{\mathcal{C}_{-}} \frac{z^{a}}{(z-(-1))^{2}} d z=-\left.2 \pi i \frac{d z^{a}}{d z}\right|_{z=-1}=2 \pi i a e^{\pi a i} \tag{5.196}
\end{equation*}
$$

We also add the integral I_{-}from ∞ to 0 just below the real axis

$$
\begin{equation*}
I_{-}=\int_{\infty}^{0} \frac{(x-i \epsilon)^{a}}{(x-i \epsilon+1)^{2}} d x=\int_{\infty}^{0} \frac{\exp (a(\ln (x)+2 \pi i))}{(x+1)^{2}} d x \tag{5.197}
\end{equation*}
$$

which is

$$
\begin{equation*}
I_{-}=-e^{2 \pi a i} \int_{0}^{\infty} \frac{x^{a}}{(x+1)^{2}} d x=-e^{2 \pi a i} I \tag{5.198}
\end{equation*}
$$

