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the interval [�1, 1]. Let’s promote x to a complex variable z, put the
cut on the negative real axis, and write the square root as
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tour as R ! 1. If we shrink-wrap this ccw contour around the pole at z = k
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So if k = �2, then I = ⇡/
p
3, while if k = 2, then I = � ⇡/

p
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Example 5.31 (Contour Integral with a Cut) Let’s compute the integral
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for �1 < a < 1. We promote x to a complex variable z and put the cut on
the positive real axis. Since
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|z + 1|2 = 0, (5.195)

the integrand vanishes faster than 1/|z|, and we may add two ghost contours,
G+ counter-clockwise around the upper half-plane and G� counter-clockwise
around the lower half-plane, as shown in Fig. 5.8.
We add a contour C� that runs from �1 to the double pole at z = �1,

loops around that pole, and then runs back to �1; the two long contours
along the negative real axis cancel because the cut in ✓ lies on the positive
real axis. So the contour integral along C� is just the clockwise integral
around the double pole which by Cauchy’s integral formula (5.34) isI
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We also add the integral I� from 1 to 0 just below the real axis
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which is
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