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for n > —1 and zero otherwise. So the Laurent series for f(z) is
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The series starts at n = —1, not at n = —oo, because f(z) is meromorphic
with only a simple pole at z = 0. O

Example 5.10 (The Argument Principle) Consider the counter-clockwise
integral
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along a contour C that lies inside a simply connected region R in which f(z)
is analytic and g(z) meromorphic. If the function g(z) has a zero or a pole
of order n at w € R and no other singularity in R
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then the ratio ¢'/g is
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and the integral is
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Any function g(z) meromorphic in R will possess a Laurent series
o0
9(z) =Y ax(w)(z —w)* (5.97)
k=n

about each point w € R. One may show (exercise 5.18) that as z — w the
ratio ¢'/g again approaches (5.95). It follows that the integral (5.93) is a
sum of nyf(wy) at the zeros and poles of g(z) that lie within the contour C
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in which |ng| is the multiplicity of the ¢th zero or pole. O



