of analyticity. Since $I_{M}=-I$, the integral of $f(z)$ along this closed contour vanishes:

$$
\begin{equation*}
\oint f(z) d z=I+I_{M}=I-I=0 \tag{5.25}
\end{equation*}
$$

and we have again derived Cauchy's integral theorem.
Since every polynomial $P(z)=c_{0}+c_{1} z+\cdots+c_{n} z^{n}$ is entire (everywhere analytic), it follows that its integral along any closed contour must vanish

$$
\begin{equation*}
\oint P(z) d z=0 . \tag{5.26}
\end{equation*}
$$

Example 5.3 (A pole) The derivative of the function $f(z)=1 /\left(z-z_{0}\right)$

$$
\begin{equation*}
f^{\prime}(z)=\lim _{d z \rightarrow 0}\left(\frac{1}{z+d z-z_{0}}-\frac{1}{z-z_{0}}\right) \frac{1}{d z}=-\frac{1}{\left(z-z_{0}\right)^{2}} \tag{5.27}
\end{equation*}
$$

exists everywhere except at $z=z_{0}$, a region that is not simply connected.

### 5.3 Cauchy's Integral Formula

Let $f(z)$ be analytic in a simply connected region $\mathcal{R}$ and $z_{0}$ a point inside this region. We first will integrate the function $f(z) /\left(z-z_{0}\right)$ along a tiny closed counterclockwise contour around the point $z_{0}$. The contour is a circle of radius $\epsilon$ with center at $z_{0}$ with points $z=z_{0}+\epsilon e^{i \theta}$ for $0 \leq \theta \leq 2 \pi$, and $d z=i \epsilon e^{i \theta} d \theta$. Since $z-z_{0}=\epsilon e^{i \theta}$, the contour integral in the limit $\epsilon \rightarrow 0$ is

$$
\begin{align*}
\oint_{\epsilon} \frac{f(z)}{z-z_{0}} d z & =\int_{0}^{2 \pi} \frac{\left[f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)\right]}{z-z_{0}} i \epsilon e^{i \theta} d \theta \\
& =\int_{0}^{2 \pi} \frac{\left[f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right) \epsilon e^{i \theta}\right]}{\epsilon e^{i \theta}} i \epsilon e^{i \theta} d \theta \\
& =\int_{0}^{2 \pi}\left[f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right) \epsilon e^{i \theta}\right] i d \theta . \tag{5.28}
\end{align*}
$$

The $\theta$-integral involving $f^{\prime}\left(z_{0}\right)$ vanishes, and so we have

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{\epsilon} \frac{f(z)}{z-z_{0}} d z \tag{5.29}
\end{equation*}
$$

which is a miniature version of Cauchy's integral formula.
Now consider the counterclockwise contour $\mathcal{C}^{\prime}$ in Fig. 5.3 which is a big counterclockwise circle, a small clockwise circle, and two parallel straight lines, all within a simply connected region $\mathcal{R}$ in which $f(z)$ is analytic. The

