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of analyticity. Since IM = �I, the integral of f(z) along this closed contour
vanishes: I

f(z) dz = I + IM = I � I = 0 (5.25)

and we have again derived Cauchy’s integral theorem.
Since every polynomial P (z) = c
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analytic), it follows that its integral along any closed contour must vanishI

P (z) dz = 0. (5.26)
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exists everywhere except at z = z
0

, a region that is not simply connected.

5.3 Cauchy’s Integral Formula

Let f(z) be analytic in a simply connected region R and z
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The ✓-integral involving f 0(z
0

) vanishes, and so we have
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which is a miniature version of Cauchy’s integral formula.
Now consider the counterclockwise contour C0 in Fig. 5.3 which is a big

counterclockwise circle, a small clockwise circle, and two parallel straight
lines, all within a simply connected region R in which f(z) is analytic. The


