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electric field D = ✏mE, where the permittivity ✏m = ✏
0

+ �m = Km ✏
0

of
the material di↵ers from that of the vacuum ✏

0

by the electric suscepti-
bility �m and by the relative permittivity Km. The permittivity of the
vacuum is the electric constant ✏

0

.
An electric fieldE exerts on a charge q a force F = qE even in a dielectric

medium. The electrostatic energy W of a system of linear dielectrics is the
volume integral

W =
1

2

Z
D · E d3r. (4.128)

Example 4.15 (Field of a Charge Near an Interface) Consider two semi-
infinite dielectrics of permittivities ✏

1

and ✏
2

separated by an infinite hor-
izontal x-y-plane. What is the electrostatic potential due to a charge q in
region 1 at a height h above the interface?
The easy way to solve this problem is to put an image charge q0 at the

same distance from the interface in region 2 so that the potential in region
1 is
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This potential satisfies Gauss’s law r · D = ⇢ in region 1. In region 2, the
potential
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(4.130)

also satisfies Gauss’s law. The continuity (4.127) of the tangential compo-
nent of E tells us that the partial derivatives of V

1

and V
2

in the x (or y)
direction must be the same at z = 0
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. (4.131)

The discontinuity equation (4.127) for the electric displacement says that at
the interface at z = 0 with no surface charge

✏
1

@V
1

(x, y, 0)

@z
= ✏

2

@V
2

(x, y, 0)

@z
. (4.132)

These two equations (4.131 & 4.132) allow one to solve for q0 and q00
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✏
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In the limit h ! 0, the potential in region 1 becomes
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in which ✏̄r is the mean permittivity ✏̄ = (✏
1

+ ✏
2

)/2. Similarly in region 2,
the potential is
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in the limit h ! 0.

Example 4.16 (A Charge Near a Plasma Membrane ) A eukaryotic cell
(the kind with a nucleus) is surrounded by a plasma membrane, which is a
phospholipid bilayer about 5 nm thick. Both sides of the plasma membrane
are in contact with salty water. The permittivity of the water is ✏w ⇡ 80✏

0

while that of the membrane considered as a simple lipid slab is ✏` ⇡ 2✏
0

.
Let’s think about the potential felt by an ion in the water outside a cell

but near its membrane, and let us for simplicity imagine the membrane to
be infinitely thick so that we can use the simple formulas we’ve derived. The
potential due to the ion, if its charge is q, is then given by equation (4.129)
with ✏

1

= ✏w and ✏
2

= ✏`. The image-charge term in V
1

(r) is the potential
due to the polarization of the membrane and the water by the ion. It is the
potential felt by the ion. Since the image charge by (4.133) is q0 ⇡ q, the
potential the ion feels is Vi(z) ⇡ q/8⇡ewz. The force on the ion then is

F = �qV 0
i (z) =

q2

8⇡ewz
. (4.136)

It always is positive no matter what the sign of the charge is. A lipid slab
in water repels ions. Similarly, a charge in a lipid slab is attracted to the
water outside the slab.
Now imagine an electric dipole in water near a lipid slab. Now there are

two equal and opposite charges and two equal and opposite mirror charges.
The net e↵ect is that the slab repels the dipole. So lipids repel water
molecules; they are said to be hydrophobic. This is one of the reasons
why folding proteins move their hydrophobic amino acids inside and their
polar or hydrophilic ones outside.
With some e↵ort, one may use the method of images to compute the

electric potential of a charge in or near a plasma membrane taken to be a
lipid slab of finite thickness.
The electric potential in the lipid bilayer V`(⇢, z) of thickness t due to a


