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So B
0

= 1 and B
1

= �1/2. The remaining odd Bernoulli numbers vanish

B
2n+1

= 0 for n > 0 (4.105)

and the remaining even ones are given by Euler’s zeta function (4.92) formula

B
2n =

(�1)n�12(2n)!

(2⇡)2n
⇣(2n) for n > 0. (4.106)

The Bernoulli numbers occur in the power series for many transcendental
functions, for instance

cothx =
1

x
+

1X
k=1

22kB
2k

(2k)!
x2k�1 for x2 < ⇡2. (4.107)

Bernoulli’s polynomials Bn(y) are defined by the series

xexy

ex � 1
=

1X
n=0

Bn(y)
xn

n!
(4.108)

for the generating function xexy/(ex � 1).
Some authors (Whittaker andWatson, 1927, p. 125–127) define Bernoulli’s

numbers instead by

Bn =
2(2n)!

(2⇡)2n
⇣(2n) = 4n

Z 1

0

t2n�1 dt

e2⇡t � 1
(4.109)

a result due to Carda.

4.12 Asymptotic Series

A series

sn(x) =
nX

k=0

ak
xk

(4.110)

is an asymptotic expansion for a real function f(x) if the remainder Rn

Rn(x) = f(x)� sn(x) (4.111)

satisfies the condition

lim
x!1

xnRn(x) = 0 (4.112)

for fixed n. In this case, one writes

f(x) ⇡
1X
k=0

ak
xk

(4.113)
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where the wavy equal sign indicates equality in the sense of (4.112). Some
authors add the condition:

lim
n!1

xnRn(x) = 1 (4.114)

for fixed x.

Example 4.14 (The Asymptotic Series for E
1

) Let’s develop an asymp-
totic expansion for the function

E
1

(x) =

Z 1

x
e�y dy

y
(4.115)

which is related to the exponential-integral function

Ei(x) =

Z x

�1
ey

dy

y
(4.116)

by the tricky formula E
1

(x) = �Ei(�x). Since

e�y
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= � d
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y2
(4.117)

we may integrate by parts, getting

E
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(x) =
e�x

x
�
Z 1

x
e�y dy

y2
. (4.118)

Integrating by parts again, we find

E
1

(x) =
e�x

x
� e�x

x2
+ 2
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e�y dy
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. (4.119)

Eventually, we develop the series

E
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(x) = e�x
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(4.120)

with remainder

Rn(x) = (�1)n n!

Z 1

x
e�y dy

yn+1

. (4.121)

Setting y = u+ x, we have

Rn(x) = (�1)n
n! e�x

xn+1

Z 1
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e�u du�
1 + u

x

�n+1

(4.122)


