So $B_{0}=1$ and $B_{1}=-1 / 2$. The remaining odd Bernoulli numbers vanish

$$
\begin{equation*}
B_{2 n+1}=0 \quad \text { for } n>0 \tag{4.105}
\end{equation*}
$$

and the remaining even ones are given by Euler's zeta function (4.92) formula

$$
\begin{equation*}
B_{2 n}=\frac{(-1)^{n-1} 2(2 n)!}{(2 \pi)^{2 n}} \zeta(2 n) \quad \text { for } n>0 \tag{4.106}
\end{equation*}
$$

The Bernoulli numbers occur in the power series for many transcendental functions, for instance

$$
\begin{equation*}
\operatorname{coth} x=\frac{1}{x}+\sum_{k=1}^{\infty} \frac{2^{2 k} B_{2 k}}{(2 k)!} x^{2 k-1} \quad \text { for } x^{2}<\pi^{2} \tag{4.107}
\end{equation*}
$$

Bernoulli's polynomials $B_{n}(y)$ are defined by the series

$$
\begin{equation*}
\frac{x e^{x y}}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n}(y) \frac{x^{n}}{n!} \tag{4.108}
\end{equation*}
$$

for the generating function $x e^{x y} /\left(e^{x}-1\right)$.
Some authors (Whittaker and Watson, 1927, p. 125-127) define Bernoulli's numbers instead by

$$
\begin{equation*}
B_{n}=\frac{2(2 n)!}{(2 \pi)^{2 n}} \zeta(2 n)=4 n \int_{0}^{\infty} \frac{t^{2 n-1} d t}{e^{2 \pi t}-1} \tag{4.109}
\end{equation*}
$$

a result due to Carda.

4.12 Asymptotic Series

A series

$$
\begin{equation*}
s_{n}(x)=\sum_{k=0}^{n} \frac{a_{k}}{x^{k}} \tag{4.110}
\end{equation*}
$$

is an asymptotic expansion for a real function $f(x)$ if the remainder R_{n}

$$
\begin{equation*}
R_{n}(x)=f(x)-s_{n}(x) \tag{4.111}
\end{equation*}
$$

satisfies the condition

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{n} R_{n}(x)=0 \tag{4.112}
\end{equation*}
$$

for fixed n. In this case, one writes

$$
\begin{equation*}
f(x) \approx \sum_{k=0}^{\infty} \frac{a_{k}}{x^{k}} \tag{4.113}
\end{equation*}
$$

where the wavy equal sign indicates equality in the sense of (4.112). Some authors add the condition:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x^{n} R_{n}(x)=\infty \tag{4.114}
\end{equation*}
$$

for fixed x.
Example 4.14 (The Asymptotic Series for E_{1}) Let's develop an asymptotic expansion for the function

$$
\begin{equation*}
E_{1}(x)=\int_{x}^{\infty} e^{-y} \frac{d y}{y} \tag{4.115}
\end{equation*}
$$

which is related to the exponential-integral function

$$
\begin{equation*}
E i(x)=\int_{-\infty}^{x} e^{y} \frac{d y}{y} \tag{4.116}
\end{equation*}
$$

by the tricky formula $E_{1}(x)=-E i(-x)$. Since

$$
\begin{equation*}
\frac{e^{-y}}{y}=-\frac{d}{d y}\left(\frac{e^{-y}}{y}\right)-\frac{e^{-y}}{y^{2}} \tag{4.117}
\end{equation*}
$$

we may integrate by parts, getting

$$
\begin{equation*}
E_{1}(x)=\frac{e^{-x}}{x}-\int_{x}^{\infty} e^{-y} \frac{d y}{y^{2}} \tag{4.118}
\end{equation*}
$$

Integrating by parts again, we find

$$
\begin{equation*}
E_{1}(x)=\frac{e^{-x}}{x}-\frac{e^{-x}}{x^{2}}+2 \int_{x}^{\infty} e^{-y} \frac{d y}{y^{3}} \tag{4.119}
\end{equation*}
$$

Eventually, we develop the series

$$
\begin{equation*}
E_{1}(x)=e^{-x}\left(\frac{0!}{x}-\frac{1!}{x^{2}}+\frac{2!}{x^{3}}-\frac{3!}{x^{4}}+\frac{4!}{x^{5}}-\ldots\right) \tag{4.120}
\end{equation*}
$$

with remainder

$$
\begin{equation*}
R_{n}(x)=(-1)^{n} n!\int_{x}^{\infty} e^{-y} \frac{d y}{y^{n+1}} \tag{4.121}
\end{equation*}
$$

Setting $y=u+x$, we have

$$
\begin{equation*}
R_{n}(x)=(-1)^{n} \frac{n!e^{-x}}{x^{n+1}} \int_{0}^{\infty} e^{-u} \frac{d u}{\left(1+\frac{u}{x}\right)^{n+1}} \tag{4.122}
\end{equation*}
$$

