Example 4.12 (Planck's Distribution) Max Planck (1858-1947) showed that the electromagnetic energy in a closed cavity of volume V at a temperature T in the frequency interval $d \nu$ about ν is

$$
\begin{equation*}
d U(\beta, \nu, V)=\frac{8 \pi h V}{c^{3}} \frac{\nu^{3}}{e^{\beta h \nu}-1} d \nu \tag{4.94}
\end{equation*}
$$

in which $\beta=1 /(k T), k=1.3806503 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ is Boltzmann's constant, and $h=6.626068 \times 10^{-34} \mathrm{Js}$ is Planck's constant. The total energy then is the integral

$$
\begin{equation*}
U(\beta, V)=\frac{8 \pi h V}{c^{3}} \int_{0}^{\infty} \frac{\nu^{3}}{e^{\beta h \nu}-1} d \nu \tag{4.95}
\end{equation*}
$$

which we may do by letting $x=\beta h \nu$ and using the geometric series (4.31)

$$
\begin{align*}
U(\beta, V) & =\frac{8 \pi(k T)^{4} V}{(h c)^{3}} \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x \\
& =\frac{8 \pi(k T)^{4} V}{(h c)^{3}} \int_{0}^{\infty} \frac{x^{3} e^{-x}}{1-e^{-x}} d x \\
& =\frac{8 \pi(k T)^{4} V}{(h c)^{3}} \int_{0}^{\infty} x^{3} e^{-x} \sum_{n=0}^{\infty} e^{-n x} d x . \tag{4.96}
\end{align*}
$$

The geometric series is absolutely and uniformly convergent for $x>0$, and we may interchange the limits of summation and integration. After another change of variables, the Gamma-function formula (5.102) gives

$$
\begin{align*}
U(\beta, V) & =\frac{8 \pi(k T)^{4} V}{(h c)^{3}} \sum_{n=0}^{\infty} \int_{0}^{\infty} x^{3} e^{-(n+1) x} d x \\
& =\frac{8 \pi(k T)^{4} V}{(h c)^{3}} \sum_{n=0}^{\infty} \frac{1}{(n+1)^{4}} \int_{0}^{\infty} y^{3} e^{-y} d y \\
& =\frac{8 \pi(k T)^{4} V}{(h c)^{3}} 3!\zeta(4)=\frac{8 \pi^{5}(k T)^{4} V}{15(h c)^{3}} . \tag{4.97}
\end{align*}
$$

It follows that the power radiated by a "black body" is proportional to the fourth power of its temperature and to its area A

$$
\begin{equation*}
P=\sigma A T^{4} \tag{4.98}
\end{equation*}
$$

in which

$$
\begin{equation*}
\sigma=\frac{2 \pi^{5} k^{4}}{15 h^{3} c^{2}}=5.670400(40) \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4} \tag{4.99}
\end{equation*}
$$

is Stefan's constant.

The number of photons in the black-body distribution (4.94) at inverse temperature β in the volume V is

$$
\begin{align*}
N(\beta, V) & =\frac{8 \pi V}{c^{3}} \int_{0}^{\infty} \frac{\nu^{2}}{e^{\beta h \nu}-1} d \nu=\frac{8 \pi V}{(c \beta h)^{3}} \int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} d x \\
& =\frac{8 \pi V}{(c \beta h)^{3}} \int_{0}^{\infty} \frac{x^{2} e^{-x}}{1-e^{-x}} d x=\frac{8 \pi V}{(c \beta h)^{3}} \int_{0}^{\infty} x^{2} e^{-x} \sum_{n=0}^{\infty} e^{-n x} d x \\
& =\frac{8 \pi V}{(c \beta h)^{3}} \sum_{n=0}^{\infty} \int_{0}^{\infty} x^{2} e^{-(n+1) x} d x=\frac{8 \pi V}{(c \beta h)^{3}} \sum_{n=0}^{\infty} \frac{1}{(n+1)^{3}} \int_{0}^{\infty} y^{2} e^{-y} d y \\
& =\frac{8 \pi V}{(c \beta h)^{3}} \zeta(3) 2!=\frac{8 \pi(k T)^{3} V}{(c h)^{3}} \zeta(3) 2!. \tag{4.100}
\end{align*}
$$

The mean energy $\langle E\rangle$ of a photon in the black-body distribution (4.94) is the energy $U(\beta, V)$ divided by the number of photons $N(\beta, V)$

$$
\begin{equation*}
\langle E\rangle=\langle h \nu\rangle=\frac{3!\zeta(4)}{2!\zeta(3)} k T=\frac{\pi^{4}}{30 \zeta(3)} k T \tag{4.101}
\end{equation*}
$$

or $\langle E\rangle \approx 2.70118 k T$ since Apéry's constant $\zeta(3)$ is $1.2020569032 \ldots$ (Roger Apéry, 1916-1994).

Example 4.13 (The Lerch Transcendent) The Lerch transcendent is the series

$$
\begin{equation*}
\Phi(z, s, \alpha)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+\alpha)^{s}} . \tag{4.102}
\end{equation*}
$$

It converges when $|z|<1$ and $\operatorname{Re} s>0$ and $\operatorname{Re} \alpha>0$.

4.11 Bernoulli Numbers and Polynomials

The Bernoulli numbers B_{n} are defined by the infinite series

$$
\begin{equation*}
\frac{x}{e^{x}-1}=\left.\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\left[\frac{d^{n}}{d x^{n}} \frac{x}{e^{x}-1}\right]\right|_{x=0}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!} \tag{4.103}
\end{equation*}
$$

for the generating function $x /\left(e^{x}-1\right)$. They are the successive derivatives

$$
\begin{equation*}
B_{n}=\left.\frac{d^{n}}{d x^{n}} \frac{x}{e^{x}-1}\right|_{x=0} . \tag{4.104}
\end{equation*}
$$

