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Example 4.12 (Planck’s Distribution) Max Planck (1858–1947) showed
that the electromagnetic energy in a closed cavity of volume V at a temper-
ature T in the frequency interval d⌫ about ⌫ is

dU(�, ⌫, V ) =
8⇡hV
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in which � = 1/(kT ), k = 1.3806503⇥10�23 J/K isBoltzmann’s constant,
and h = 6.626068⇥ 10�34 Js is Planck’s constant. The total energy then
is the integral
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which we may do by letting x = �h⌫ and using the geometric series (4.31)
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The geometric series is absolutely and uniformly convergent for x > 0, and
we may interchange the limits of summation and integration. After another
change of variables, the Gamma-function formula (5.102) gives
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It follows that the power radiated by a “black body” is proportional to the
fourth power of its temperature and to its area A

P = �AT 4 (4.98)

in which

� =
2⇡5k4

15h3c2
= 5.670400(40)⇥ 10�8 Wm�2K�4 (4.99)

is Stefan’s constant.
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The number of photons in the black-body distribution (4.94) at inverse
temperature � in the volume V is
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The mean energy hEi of a photon in the black-body distribution (4.94) is
the energy U(�, V ) divided by the number of photons N(�, V )

hEi = hh⌫i = 3! ⇣(4)
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or hEi ⇡ 2.70118 kT since Apéry’s constant ⇣(3) is 1.2020569032 . . . (Roger
Apéry, 1916–1994).

Example 4.13 (The Lerch Transcendent) The Lerch transcendent is
the series

�(z, s,↵) =
1X
n=0

zn

(n+ ↵)s
. (4.102)

It converges when |z| < 1 and Re s > 0 and Re↵ > 0.
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The Bernoulli numbers Bn are defined by the infinite series
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for the generating function x/(ex�1). They are the successive derivatives
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