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One may extend the definition (4.36) of n-factorial from positive integers
to complex numbers by means of the integral formula
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for Re z > �1. In particular
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which explains the definition (4.37). The factorial function (z � 1)! in turn
defines the gamma function for Re z > 0 as

�(z) =

Z 1

0

e�t tz�1 dt = (z � 1)! (4.55)

as may be seen from (4.53). By di↵erentiating this formula and integrating
it by parts, we see that the gamma function satisfies the key identity
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= z �(z). (4.56)

Since �(1) = 0! = 1, we may use this identity (4.56) to extend the definition
(5.102) of the gamma function in unit steps into the left half-plane
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as long as we avoid the negative integers and zero. This extension leads to
Euler’s definition
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and to Weierstrass’s (exercise 4.6)
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(Karl Theodor Wilhelm Weierstrass, 1815–1897), and is an example of an-
alytic continuation (section 5.12).
One may show (exercise 4.8) that another formula for �(z) is
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for Re z > 0 and that
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which implies (exercise 4.11) that
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Example 4.7 (Bessel Function of nonintegral index) We can use the
gamma-function formula (4.55) for n! to extend the definition (4.49) of the
Bessel function of the first kind Jn(⇢) to nonintegral values ⌫ of the index
n. Replacing n by ⌫ and (m+ n)! by �(m+ ⌫ + 1), we get
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which makes sense even for complex values of ⌫.

Example 4.8 (Spherical Bessel Function) The spherical Bessel function
is defined as
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For small values of its argument |⇢| ⌧ 1, the first term in the series (4.63)
dominates and so (exercise 4.7)
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as one may show by repeatedly using the key identity �(z+1) = z �(z).

4.6 Taylor Series

If the function f(x) is a real-valued function of a real variable x with a
continuous Nth derivative, then Taylor’s expansion for it is
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