One may extend the definition (4.36) of $n$-factorial from positive integers to complex numbers by means of the integral formula

$$
\begin{equation*}
z!\equiv \int_{0}^{\infty} e^{-t} t^{z} d t \tag{4.53}
\end{equation*}
$$

for $\operatorname{Re} z>-1$. In particular

$$
\begin{equation*}
0!=\int_{0}^{\infty} e^{-t} d t=1 \tag{4.54}
\end{equation*}
$$

which explains the definition (4.37). The factorial function $(z-1)$ ! in turn defines the gamma function for $\operatorname{Re} z>0$ as

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t=(z-1)! \tag{4.55}
\end{equation*}
$$

as may be seen from (4.53). By differentiating this formula and integrating it by parts, we see that the gamma function satisfies the key identity

$$
\begin{align*}
\Gamma(z+1) & =\int_{0}^{\infty}\left(-\frac{d}{d t} e^{-t}\right) t^{z} d t=\int_{0}^{\infty} e^{-t}\left(\frac{d}{d t} t^{z}\right) d t=\int_{0}^{\infty} e^{-t} z t^{z-1} d t \\
& =z \Gamma(z) \tag{4.56}
\end{align*}
$$

Since $\Gamma(1)=0!=1$, we may use this identity (4.56) to extend the definition (5.102) of the gamma function in unit steps into the left half-plane

$$
\begin{equation*}
\Gamma(z)=\frac{1}{z} \Gamma(z+1)=\frac{1}{z} \frac{1}{z+1} \Gamma(z+2)=\frac{1}{z} \frac{1}{z+1} \frac{1}{z+2} \Gamma(z+3)=\ldots \tag{4.57}
\end{equation*}
$$

as long as we avoid the negative integers and zero. This extension leads to Euler's definition

$$
\begin{equation*}
\Gamma(z)=\lim _{n \rightarrow \infty} \frac{1 \cdot 2 \cdot 3 \cdots n}{z(z+1)(z+2) \cdots(z+n)} n^{z} \tag{4.58}
\end{equation*}
$$

and to Weierstrass's (exercise 4.6)

$$
\begin{equation*}
\Gamma(z)=\frac{1}{z} e^{-\gamma z}\left[\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}\right]^{-1} \tag{4.59}
\end{equation*}
$$

(Karl Theodor Wilhelm Weierstrass, 1815-1897), and is an example of analytic continuation (section 5.12).

One may show (exercise 4.8) that another formula for $\Gamma(z)$ is

$$
\begin{equation*}
\Gamma(z)=2 \int_{0}^{\infty} e^{-t^{2}} t^{2 z-1} d t \tag{4.60}
\end{equation*}
$$

for $\operatorname{Re} z>0$ and that

$$
\begin{equation*}
\Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n)!}{n!2^{2 n}} \sqrt{\pi} \tag{4.61}
\end{equation*}
$$

which implies (exercise 4.11) that

$$
\begin{equation*}
\Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n-1)!!}{2^{n}} \sqrt{\pi} \tag{4.62}
\end{equation*}
$$

Example 4.7 (Bessel Function of nonintegral index) We can use the gamma-function formula (4.55) for $n$ ! to extend the definition (4.49) of the Bessel function of the first kind $J_{n}(\rho)$ to nonintegral values $\nu$ of the index $n$. Replacing $n$ by $\nu$ and $(m+n)$ ! by $\Gamma(m+\nu+1)$, we get

$$
\begin{equation*}
J_{\nu}(\rho)=\left(\frac{\rho}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{\rho}{2}\right)^{2 m} \tag{4.63}
\end{equation*}
$$

which makes sense even for complex values of $\nu$.

Example 4.8 (Spherical Bessel Function) The spherical Bessel function is defined as

$$
\begin{equation*}
j_{\ell}(\rho) \equiv \sqrt{\frac{\pi}{2 \rho}} J_{\ell+1 / 2}(\rho) \tag{4.64}
\end{equation*}
$$

For small values of its argument $|\rho| \ll 1$, the first term in the series (4.63) dominates and so (exercise 4.7)

$$
\begin{equation*}
j_{\ell}(\rho) \approx \frac{\sqrt{\pi}}{2}\left(\frac{\rho}{2}\right)^{\ell} \frac{1}{\Gamma(\ell+3 / 2)}=\frac{\ell!(2 \rho)^{\ell}}{(2 \ell+1)!}=\frac{\rho^{\ell}}{(2 \ell+1)!!} \tag{4.65}
\end{equation*}
$$

as one may show by repeatedly using the key identity $\Gamma(z+1)=z \Gamma(z)$.

### 4.6 Taylor Series

If the function $f(x)$ is a real-valued function of a real variable $x$ with a continuous $N$ th derivative, then Taylor's expansion for it is

$$
\begin{align*}
f(x+a) & =f(x)+a f^{\prime}(x)+\frac{a^{2}}{2} f^{\prime \prime}(x)+\cdots+\frac{a^{N-1}}{(N-1)!} f^{(N-1)}+E_{N} \\
& =\sum_{n=0}^{N-1} \frac{a^{n}}{n!} f^{(n)}(x)+E_{N} \tag{4.66}
\end{align*}
$$

