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3.10 Derivatives and Integrals of Laplace Transforms

The derivatives of a Laplace transform f(s) are by its definition (3.125)
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0
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They usually are well defined if f(s) is well defined. For instance, if we
di↵erentiate the Laplace transform f(s) = 1/s of the function F (t) = 1 as
given by (3.126), then we find
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which tells us that the Laplace transform of tn is n!/sn+1.
The result of di↵erentiating the function F (t) also has a simple form.
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= � F (0) + s f(s). (3.141)

The indefinite integral of the Laplace transform (3.125) is
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and its nth indefinite integral is
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If f(s) is a well-behaved function, then these indefinite integrals usually are
well defined for s > 0 as long as F (t) ! 0 suitably as t ! 0.

3.11 Laplace Transforms and Di↵erential Equations

Suppose we wish to solve the di↵erential equation

P (d/ds) f(s) = j(s). (3.144)

By writing f(s) and j(s) as Laplace transforms

f(s) =

Z 1

0
e�st F (t) dt and j(s) =
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0
e�st J(t) dt. (3.145)


