If we generalize the relations (3.12-3.14) between Fourier series and transforms from one to n dimensions, then we find that the Fourier series corresponding to the Fourier transform (3.94) is

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{2 \pi}{L}\right)^{n} \sum_{j_{1}=-\infty}^{\infty} \ldots \sum_{j_{n}=-\infty}^{\infty} e^{i\left(k_{j_{1}} x_{1}+\cdots+k_{j_{n}} x_{n}\right)} \frac{\tilde{f}\left(k_{j_{1}}, \ldots, k_{j_{n}}\right)}{(2 \pi)^{n / 2}} \tag{3.95}
\end{equation*}
$$

in which $k_{j_{\ell}}=2 \pi j_{\ell} / L$. Thus, for $n=3$ we have

$$
\begin{equation*}
f(\boldsymbol{x})=\frac{(2 \pi)^{3}}{V} \sum_{j_{1}=-\infty}^{\infty} \sum_{j_{2}=-\infty}^{\infty} \sum_{j_{3}=-\infty}^{\infty} e^{i \boldsymbol{k}_{\boldsymbol{j}} \cdot \boldsymbol{x}} \frac{\tilde{f}\left(\boldsymbol{k}_{\boldsymbol{j}}\right)}{(2 \pi)^{3 / 2}} \tag{3.96}
\end{equation*}
$$

in which $\boldsymbol{k}_{\boldsymbol{j}}=\left(k_{j_{1}}, k_{j_{2}}, k_{j_{3}}\right)$ and $V=L^{3}$ is the volume of the box.
Example 3.8 (The Feynman Propagator) For a spinless quantum field of mass m, Feynman's propagator is the four-dimensional Fourier transform

$$
\begin{equation*}
\triangle_{F}(x)=\int \frac{\exp (i k \cdot x)}{k^{2}+m^{2}-i \epsilon} \frac{d^{4} k}{(2 \pi)^{4}} \tag{3.97}
\end{equation*}
$$

where $k \cdot x=\boldsymbol{k} \cdot \boldsymbol{x}-k^{0} x^{0}$, all physical quantities are in natural units $(c=\hbar=1)$, and $x^{0}=c t=t$. The tiny imaginary term $-i \epsilon$ makes $\triangle_{F}(x-y)$ proportional to the mean value in the vacuum state $|0\rangle$ of the time-ordered product of the fields $\phi(x)$ and $\phi(y)$ (section 5.34)

$$
\begin{align*}
-i \triangle_{F}(x-y) & =\langle 0| \mathcal{T}[\phi(x) \phi(y)]|0\rangle \tag{3.98}\\
& \equiv \theta\left(x^{0}-y^{0}\right)\langle 0| \phi(x) \phi(y)|0\rangle+\theta\left(y^{0}-x^{0}\right)\langle 0| \phi(y) \phi(x)|0\rangle
\end{align*}
$$

in which $\theta(a)=(a+|a|) / 2|a|$ is the Heaviside function (2.166).

3.6 Convolutions

The convolution of $f(x)$ with $g(x)$ is the integral

$$
\begin{equation*}
f * g(x)=\int_{-\infty}^{\infty} \frac{d y}{\sqrt{2 \pi}} f(x-y) g(y) \tag{3.99}
\end{equation*}
$$

The convolution product is symmetric

$$
\begin{equation*}
f * g(x)=g * f(x) \tag{3.100}
\end{equation*}
$$

because setting $z=x-y$, we have

$$
\begin{align*}
f * g(x) & =\int_{-\infty}^{\infty} \frac{d y}{\sqrt{2 \pi}} f(x-y) g(y)=-\int_{\infty}^{-\infty} \frac{d z}{\sqrt{2 \pi}} f(z) g(x-z) \tag{3.101}\\
& =\int_{-\infty}^{\infty} \frac{d z}{\sqrt{2 \pi}} g(x-z) f(z)=g * f(x) .
\end{align*}
$$

Convolutions may look strange at first, but they often occur in physics in the three-dimensional form

$$
\begin{equation*}
F(\boldsymbol{x})=\int G\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) S\left(\boldsymbol{x}^{\prime}\right) d^{3} \boldsymbol{x} \tag{3.102}
\end{equation*}
$$

in which G is a Green's function and S is a source.
Example 3.9 (Gauss's Law) The divergence of the electric field \boldsymbol{E} is the microscopic charge density ρ divided by the electric permittivity of the vacuum $\epsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$, that is, $\nabla \cdot \boldsymbol{E}=\rho / \epsilon_{0}$. This constraint is known as Gauss's law. If the charges and fields are independent of time, then the electric field \boldsymbol{E} is the gradient of a scalar potential $\boldsymbol{E}=-\nabla \phi$. These last two equations imply that ϕ obeys Poisson's equation

$$
\begin{equation*}
-\nabla^{2} \phi=\frac{\rho}{\epsilon_{0}} \tag{3.103}
\end{equation*}
$$

We may solve this equation by using Fourier transforms as described in Sec. 3.13. If $\tilde{\phi}(\boldsymbol{k})$ and $\tilde{\rho}(\boldsymbol{k})$ respectively are the Fourier transforms of $\phi(\boldsymbol{x})$ and $\rho(\boldsymbol{x})$, then Poisson's differential equation (3.103) gives

$$
\begin{align*}
-\nabla^{2} \phi(\boldsymbol{x}) & =-\nabla^{2} \int e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \tilde{\phi}(\boldsymbol{k}) d^{3} \boldsymbol{k}=\int \boldsymbol{k}^{2} e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \tilde{\phi}(\boldsymbol{k}) d^{3} \boldsymbol{k} \\
& =\frac{\rho(\boldsymbol{x})}{\epsilon_{0}}=\int e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \frac{\tilde{\rho}(\boldsymbol{k})}{\epsilon_{0}} d^{3} \boldsymbol{k} \tag{3.104}
\end{align*}
$$

which implies the algebraic equation $\tilde{\phi}(\boldsymbol{k})=\tilde{\rho}(\boldsymbol{k}) / \epsilon_{0} \boldsymbol{k}^{2}$ which is an instance of (3.163). Performing the inverse Fourier transformation, we find for the scalar potential

$$
\begin{align*}
\phi(\boldsymbol{x}) & =\int e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \tilde{\phi}(\boldsymbol{k}) d^{3} \boldsymbol{k}=\int e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \frac{\tilde{\rho}(\boldsymbol{k})}{\epsilon_{0} \boldsymbol{k}^{2}} d^{3} \boldsymbol{k} \tag{3.105}\\
& =\int e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \frac{1}{\boldsymbol{k}^{2}} \int e^{-i \boldsymbol{k} \cdot \boldsymbol{x}^{\prime}} \frac{\rho\left(\boldsymbol{x}^{\prime}\right)}{\epsilon_{0}} \frac{d^{3} \boldsymbol{x}^{\prime} d^{3} \boldsymbol{k}}{(2 \pi)^{3}}=\int G\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \frac{\rho\left(\boldsymbol{x}^{\prime}\right)}{\epsilon_{0}} d^{3} \boldsymbol{x}^{\prime}
\end{align*}
$$

in which

$$
\begin{equation*}
G\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)=\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \frac{1}{\boldsymbol{k}^{2}} e^{i \boldsymbol{k} \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)} \tag{3.106}
\end{equation*}
$$

This function $G\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$ is the Green's function for the differential operator $-\nabla^{2}$ in the sense that

$$
\begin{equation*}
-\nabla^{2} G\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)=\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} e^{i \boldsymbol{k} \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)}=\delta^{(3)}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \tag{3.107}
\end{equation*}
$$

This Green's function ensures that expression (3.105) for $\phi(\boldsymbol{x})$ satisfies Poisson's equation (3.103). To integrate (3.106) and compute $G\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$, we use spherical coordinates with the z-axis parallel to the vector $\boldsymbol{x}-\boldsymbol{x}^{\prime}$

$$
\begin{align*}
G\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) & =\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \frac{1}{\boldsymbol{k}^{2}} e^{i \boldsymbol{k} \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)}=\int_{0}^{\infty} \frac{d k}{(2 \pi)^{2}} \int_{-1}^{1} d \cos \theta e^{i k\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| \cos \theta} \\
& =\int_{0}^{\infty} \frac{d k}{(2 \pi)^{2}} \frac{e^{i k\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}-e^{-i k\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}}{i k\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} \tag{3.108}\\
& =\frac{1}{2 \pi^{2}\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} \int_{0}^{\infty} \frac{\sin k\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| d k}{k}=\frac{1}{2 \pi^{2}\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} \int_{0}^{\infty} \frac{\sin k d k}{k}
\end{align*}
$$

In example 5.35 of section 5.34 on Cauchy's principal value, we'll show that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin k}{k} d k=\frac{\pi}{2} \tag{3.109}
\end{equation*}
$$

Using this result, we have

$$
\begin{equation*}
\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \frac{1}{\boldsymbol{k}^{2}} e^{i \boldsymbol{k} \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)}=G\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)=\frac{1}{4 \pi\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} \tag{3.110}
\end{equation*}
$$

Finally by substituting this formula for $G\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$ into Eq. (3.105), we find that the Fourier transform $\phi(x)$ of the product $\tilde{\rho}(\boldsymbol{k}) / \boldsymbol{k}^{2}$ of the functions $\tilde{\rho}(\boldsymbol{k})$ and $1 / \boldsymbol{k}^{2}$ is the convolution

$$
\begin{equation*}
\phi(\boldsymbol{x})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} \boldsymbol{x}^{\prime} \tag{3.111}
\end{equation*}
$$

of their Fourier transforms $1 /\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|$ and $\rho\left(\boldsymbol{x}^{\prime}\right)$. The Fourier transform of the product of any two functions is the convolution of their Fourier transforms, as we'll see in the next section. (George Green 1793-1841)

Example 3.10 (The Magnetic Vector Potential) The magnetic induction \boldsymbol{B} has zero divergence (as long as there are no magnetic monopoles) and so may be written as the curl $\boldsymbol{B}=\nabla \times \boldsymbol{A}$ of a vector potential \boldsymbol{A}. For time-independent currents, Ampère's law is $\nabla \times \boldsymbol{B}=\mu_{0} \boldsymbol{J}$ in which $\mu_{0}=$ $1 /\left(\epsilon_{0} c^{2}\right)=4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}$ is the permeability of the vacuum. It follows
that in the Coulomb gauge $\nabla \cdot \boldsymbol{A}=0$, the magnetostatic vector potential \boldsymbol{A} satisfies the equation

$$
\begin{equation*}
\nabla \times \boldsymbol{B}=\nabla \times(\nabla \times \boldsymbol{A})=\nabla(\nabla \cdot \boldsymbol{A})-\nabla^{2} \boldsymbol{A}=-\nabla^{2} \boldsymbol{A}=\mu_{0} \boldsymbol{J} \tag{3.112}
\end{equation*}
$$

Applying the Fourier-transform technique (3.103-3.111), we find that the Fourier transforms of \boldsymbol{A} and \boldsymbol{J} satisfy the algebraic equation

$$
\begin{equation*}
\tilde{\boldsymbol{A}}(\boldsymbol{k})=\mu_{0} \frac{\tilde{\boldsymbol{J}}(\boldsymbol{k})}{\boldsymbol{k}^{2}} \tag{3.113}
\end{equation*}
$$

which is an instance of (3.163). Performing the inverse Fourier transform, we see that \boldsymbol{A} is the convolution

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{x})=\frac{\mu_{0}}{4 \pi} \int d^{3} \boldsymbol{x}^{\prime} \frac{\boldsymbol{J}\left(\boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} . \tag{3.114}
\end{equation*}
$$

If in the solution (3.111) of Poisson's equation, $\rho(\boldsymbol{x})$ is translated by \boldsymbol{a}, then so is $\phi(\boldsymbol{x})$. That is, if $\rho^{\prime}(\boldsymbol{x})=\rho(\boldsymbol{x}+\boldsymbol{a})$ then $\phi^{\prime}(\boldsymbol{x})=\phi(\boldsymbol{x}+\boldsymbol{a})$. Similarly, if the current $\boldsymbol{J}(\boldsymbol{x})$ in (3.114) is translated by \boldsymbol{a}, then so is the potential $\boldsymbol{A}(\boldsymbol{x})$. Convolutions respect translational invariance. That's one reason why they occur so often in the formulas of physics.

3.7 The Fourier Transform of a Convolution

The Fourier transform of the convolution $f * g$ is the product of the Fourier transforms \tilde{f} and \tilde{g} :

$$
\begin{equation*}
\widetilde{f * g}(k)=\tilde{f}(k) \tilde{g}(k) . \tag{3.115}
\end{equation*}
$$

To see why, we form the Fourier transform $\widetilde{f * g}(k)$ of the convolution $f * g(x)$

$$
\begin{align*}
\widetilde{f * g}(k) & =\int_{-\infty}^{\infty} \frac{d x}{\sqrt{2 \pi}} e^{-i k x} f * g(x) \\
& =\int_{-\infty}^{\infty} \frac{d x}{\sqrt{2 \pi}} e^{-i k x} \int_{-\infty}^{\infty} \frac{d y}{\sqrt{2 \pi}} f(x-y) g(y) . \tag{3.116}
\end{align*}
$$

Now we write $f(x-y)$ and $g(y)$ in terms of their Fourier transforms $\tilde{f}(p)$ and $\tilde{g}(q)$

$$
\begin{equation*}
\widetilde{f * g}(k)=\int_{-\infty}^{\infty} \frac{d x}{\sqrt{2 \pi}} e^{-i k x} \int_{-\infty}^{\infty} \frac{d y}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{d p}{\sqrt{2 \pi}} \tilde{f}(p) e^{i p(x-y)} \int_{-\infty}^{\infty} \frac{d q}{\sqrt{2 \pi}} \tilde{g}(q) e^{i q y} \tag{3.117}
\end{equation*}
$$

and use the representation (3.36) of Dirac's delta function twice to get

$$
\begin{align*}
\widetilde{f * g}(k) & =\int_{-\infty}^{\infty} \frac{d y}{2 \pi} \int_{-\infty}^{\infty} d p \int_{-\infty}^{\infty} d q \delta(p-k) \tilde{f}(p) \tilde{g}(q) e^{i(q-p) y} \\
& =\int_{-\infty}^{\infty} d p \int_{-\infty}^{\infty} d q \delta(p-k) \delta(q-p) \tilde{f}(p) \tilde{g}(q) \\
& =\int_{-\infty}^{\infty} d p \delta(p-k) \tilde{f}(p) \tilde{g}(p)=\tilde{f}(k) \tilde{g}(k) \tag{3.118}
\end{align*}
$$

which is (3.115). Examples 3.9 and 3.10 were illustrations of this result.

3.8 Fourier Transforms and Green's Functions

A Green's function $G(x)$ for a differential operator P turns into a delta function when acted upon by P, that is, $P G(x)=\delta(x)$. If the differential operator is a polynomial $P(\partial) \equiv P\left(\partial_{1}, \ldots, \partial_{n}\right)$ in the derivatives $\partial_{1}, \ldots, \partial_{n}$ with constant coefficients, then a suitable Green's function $G(x) \equiv G\left(x_{1}, \ldots, x_{n}\right)$ will satisfy

$$
\begin{equation*}
P(\partial) G(x)=\delta^{(n)}(x) . \tag{3.119}
\end{equation*}
$$

Expressing both $G(x)$ and $\delta^{(n)}(x)$ as Fourier transforms, we get

$$
\begin{equation*}
P(\partial) G(x)=\int d^{n} k P(i k) e^{i k \cdot x} \tilde{G}(k)=\delta^{(n)}(x)=\int \frac{d^{n} k}{(2 \pi)^{n}} e^{i k \cdot x} \tag{3.120}
\end{equation*}
$$

which gives us the algebraic equation

$$
\begin{equation*}
\tilde{G}(k)=\frac{1}{(2 \pi)^{n} P(i k)} . \tag{3.121}
\end{equation*}
$$

Thus the Green's function G_{P} for the differential operator $P(\partial)$ is

$$
\begin{equation*}
G_{P}(x)=\int \frac{d^{n} k}{(2 \pi)^{n}} \frac{e^{i k \cdot x}}{P(i k)} \tag{3.122}
\end{equation*}
$$

Example 3.11 (Green and Yukawa) In 1935, Hideki Yukawa (1907-1981) proposed the partial differential equation

$$
\begin{equation*}
P_{Y}(\partial) G_{Y}(\boldsymbol{x}) \equiv\left(-\Delta+m^{2}\right) G_{Y}(\boldsymbol{x})=\left(-\nabla^{2}+m^{2}\right) G_{Y}(\boldsymbol{x})=\delta(\boldsymbol{x}) . \tag{3.123}
\end{equation*}
$$

Our (3.122) gives as the Green's function for $P_{Y}(\partial)$ the Yukawa potential

$$
\begin{equation*}
G_{Y}(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{e^{i \boldsymbol{k} \cdot \boldsymbol{x}}}{P_{Y}(i k)}=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{e^{i \boldsymbol{k} \cdot \boldsymbol{x}}}{\boldsymbol{k}^{2}+m^{2}}=\frac{e^{-m r}}{4 \pi r} \tag{3.124}
\end{equation*}
$$

an integration done in example 5.21.

