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If we generalize the relations (3.12–3.14) between Fourier series and trans-
forms from one to n dimensions, then we find that the Fourier series corre-
sponding to the Fourier transform (3.94) is
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in which k
j

= (kj1 , kj2 , kj3) and V = L3 is the volume of the box.

Example 3.8 (The Feynman Propagator) For a spinless quantum field of
mass m, Feynman’s propagator is the four-dimensional Fourier transform

4F (x) =
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exp(ik · x)
k2 +m2 � i✏

d4k

(2⇡)4
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where k · x = k · x � k0x0, all physical quantities are in natural units
(c = ~ = 1), and x0 = ct = t. The tiny imaginary term � i✏ makes
4F (x � y) proportional to the mean value in the vacuum state |0i of the
time-ordered product of the fields �(x) and �(y) (section 5.34)

�i4F (x� y) = h0|T [�(x)�(y)] |0i (3.98)

⌘ ✓(x0 � y0)h0|�(x)�(y)|0i+ ✓(y0 � x0)h0|�(y)�(x)|0i

in which ✓(a) = (a+ |a|)/2|a| is the Heaviside function (2.166).

3.6 Convolutions

The convolution of f(x) with g(x) is the integral

f ⇤ g(x) =
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�1

dyp
2⇡

f(x� y) g(y). (3.99)

The convolution product is symmetric

f ⇤ g(x) = g ⇤ f(x) (3.100)
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because setting z = x� y, we have
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Convolutions may look strange at first, but they often occur in physics in
the three-dimensional form

F (x) =

Z
G(x� x0)S(x0) d3x (3.102)

in which G is a Green’s function and S is a source.

Example 3.9 (Gauss’s Law) The divergence of the electric field E is
the microscopic charge density ⇢ divided by the electric permittivity of the
vacuum ✏

0

= 8.854 ⇥ 10�12 F/m, that is, r · E = ⇢/✏
0

. This constraint is
known as Gauss’s law. If the charges and fields are independent of time,
then the electric field E is the gradient of a scalar potential E = � r�.
These last two equations imply that � obeys Poisson’s equation
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0

. (3.103)

We may solve this equation by using Fourier transforms as described in
Sec. 3.13. If �̃(k) and ⇢̃(k) respectively are the Fourier transforms of �(x)
and ⇢(x), then Poisson’s di↵erential equation (3.103) gives
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which implies the algebraic equation �̃(k) = ⇢̃(k)/✏
0

k2 which is an instance
of (3.163). Performing the inverse Fourier transformation, we find for the
scalar potential
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This function G(x � x0) is the Green’s function for the di↵erential operator
�r2 in the sense that
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) = �(3)(x � x0). (3.107)

This Green’s function ensures that expression (3.105) for �(x) satisfies
Poisson’s equation (3.103). To integrate (3.106) and compute G(x � x0),
we use spherical coordinates with the z-axis parallel to the vector x � x0
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In example 5.35 of section 5.34 on Cauchy’s principal value, we’ll show thatZ 1
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Using this result, we haveZ
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Finally by substituting this formula for G(x � x0) into Eq. (3.105), we find
that the Fourier transform �(x) of the product ⇢̃(k)/k2 of the functions ⇢̃(k)
and 1/k2 is the convolution

�(x) =
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3x0 (3.111)

of their Fourier transforms 1/|x � x0| and ⇢(x0). The Fourier transform of
the product of any two functions is the convolution of their Fourier trans-
forms, as we’ll see in the next section. (George Green 1793–1841)

Example 3.10 (The Magnetic Vector Potential) The magnetic induction
B has zero divergence (as long as there are no magnetic monopoles) and
so may be written as the curl B = r ⇥ A of a vector potential A. For
time-independent currents, Ampère’s law is r ⇥ B = µ

0

J in which µ
0

=
1/(✏

0

c2) = 4⇡ ⇥ 10�7 N A�2 is the permeability of the vacuum. It follows
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that in the Coulomb gauge r ·A = 0, the magnetostatic vector potential A
satisfies the equation

r⇥B = r⇥ (r⇥A) = r (r ·A)�r2A = �r2A = µ
0

J . (3.112)

Applying the Fourier-transform technique (3.103–3.111), we find that the
Fourier transforms of A and J satisfy the algebraic equation

Ã(k) = µ
0

J̃(k)

k2

(3.113)

which is an instance of (3.163). Performing the inverse Fourier transform,
we see that A is the convolution
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If in the solution (3.111) of Poisson’s equation, ⇢(x) is translated by a,
then so is �(x). That is, if ⇢0(x) = ⇢(x+a) then �0(x) = �(x+a). Similarly,
if the current J(x) in (3.114) is translated by a, then so is the potential
A(x). Convolutions respect translational invariance. That’s one
reason why they occur so often in the formulas of physics.

3.7 The Fourier Transform of a Convolution

The Fourier transform of the convolution f ⇤ g is the product of the Fourier
transforms f̃ and g̃:

]f ⇤ g(k) = f̃(k) g̃(k). (3.115)

To see why, we form the Fourier transform ]f ⇤ g(k) of the convolution f⇤g(x)
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Now we write f(x � y) and g(y) in terms of their Fourier transforms f̃(p)
and g̃(q)
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and use the representation (3.36) of Dirac’s delta function twice to get
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which is (3.115). Examples 3.9 and 3.10 were illustrations of this result.

3.8 Fourier Transforms and Green’s Functions

A Green’s function G(x) for a di↵erential operator P turns into a delta func-
tion when acted upon by P , that is, PG(x) = �(x). If the di↵erential oper-
ator is a polynomial P (@) ⌘ P (@

1

, . . . , @n) in the derivatives @
1

, . . . , @n with
constant coe�cients, then a suitable Green’s function G(x) ⌘ G(x
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will satisfy

P (@)G(x) = �(n)(x). (3.119)

Expressing both G(x) and �(n)(x) as Fourier transforms, we get
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which gives us the algebraic equation
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Thus the Green’s function GP for the di↵erential operator P (@) is

GP (x) =
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P (ik)
. (3.122)

Example 3.11 (Green and Yukawa) In 1935, Hideki Yukawa (1907–1981)
proposed the partial di↵erential equation

PY (@)GY (x) ⌘ (�4+m2)GY (x) = (�r2 +m2)GY (x) = �(x). (3.123)

Our (3.122) gives as the Green’s function for PY (@) the Yukawa potential
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an integration done in example 5.21.


