3.1 The Fourier Transform

One often needs to relate a function's Fourier series to its Fourier transform. So let's compare the Fourier series (3.1) for the function f(x) on the interval [-L/2, L/2] with its Fourier transform (3.9) in the limit of large L

$$f(x) = \sum_{n=-\infty}^{\infty} f_n \, \frac{e^{i2\pi nx/L}}{\sqrt{L}} = \sum_{n=-\infty}^{\infty} f_n \, \frac{e^{ik_n x}}{\sqrt{L}} = \int_{-\infty}^{\infty} \tilde{f}(k) \, e^{ikx} \, \frac{dk}{\sqrt{2\pi}} \quad (3.12)$$

in which $k_n = 2\pi n/L = 2\pi y/L$. Now $f_n = \hat{f}(y)$, and so by the definition (3.6) of $\tilde{f}(k)$, we have $f_n = \hat{f}(Lk/2\pi) = \sqrt{2\pi/L} \tilde{f}(k)$. Thus, to get the Fourier series from the Fourier transform, we multiply the series by $2\pi/L$ and use the Fourier transform at k_n divided by $\sqrt{2\pi}$

$$f(x) = \frac{1}{\sqrt{L}} \sum_{n = -\infty}^{\infty} f_n e^{ik_n x} = \frac{2\pi}{L} \sum_{n = -\infty}^{\infty} \frac{\tilde{f}(k_n)}{\sqrt{2\pi}} e^{ik_n x}.$$
 (3.13)

Going the other way, we set $\tilde{f}(k) = \sqrt{L/2\pi} f_n = \sqrt{L/2\pi} f_{[Lk/2\pi]}$ and find

$$f(x) = \int_{-\infty}^{\infty} \tilde{f}(k) e^{ikx} \frac{dk}{\sqrt{2\pi}} = \frac{L}{2\pi} \int_{-\infty}^{\infty} \frac{f_{[Lk/2\pi]}}{\sqrt{L}} e^{ikx} dk.$$
(3.14)

Example 3.1 (The Fourier Transform of a Gaussian Is a Gaussian) The Fourier transform of the gaussian $f(x) = \exp(-m^2 x^2)$ is

$$\tilde{f}(k) = \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi}} e^{-ikx} e^{-m^2 x^2}.$$
(3.15)

We complete the square in the exponent:

$$\tilde{f}(k) = e^{-k^2/4m^2} \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi}} e^{-m^2 (x+ik/2m^2)^2}.$$
(3.16)

As we shall see in Sec. 5.14 when we study analytic functions, we may shift x to $x - ik/2m^2$, so the term $ik/2m^2$ in the exponential has no effect on the value of the *x*-integral.

$$\tilde{f}(k) = e^{-k^2/4m^2} \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi}} e^{-m^2 x^2} = \frac{1}{\sqrt{2}m} e^{-k^2/4m^2}.$$
(3.17)

Thus, the Fourier transform of a gaussian is another gaussian

$$\tilde{f}(k) = \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi}} e^{-ikx} e^{-m^2 x^2} = \frac{1}{\sqrt{2m}} e^{-k^2/4m^2}.$$
(3.18)

But the two gaussians are very different: if the gaussian $f(x) = \exp(-m^2 x^2)$ decreases slowly as $x \to \infty$ because m is small (or quickly because m is big),