One often needs to relate a function's Fourier series to its Fourier transform. So let's compare the Fourier series (3.1) for the function $f(x)$ on the interval $[-L / 2, L / 2]$ with its Fourier transform (3.9) in the limit of large L

$$
\begin{equation*}
f(x)=\sum_{n=-\infty}^{\infty} f_{n} \frac{e^{i 2 \pi n x / L}}{\sqrt{L}}=\sum_{n=-\infty}^{\infty} f_{n} \frac{e^{i k_{n} x}}{\sqrt{L}}=\int_{-\infty}^{\infty} \tilde{f}(k) e^{i k x} \frac{d k}{\sqrt{2 \pi}} \tag{3.12}
\end{equation*}
$$

in which $k_{n}=2 \pi n / L=2 \pi y / L$. Now $f_{n}=\hat{f}(y)$, and so by the definition (3.6) of $\tilde{f}(k)$, we have $f_{n}=\hat{f}(L k / 2 \pi)=\sqrt{2 \pi / L} \tilde{f}(k)$. Thus, to get the Fourier series from the Fourier transform, we multiply the series by $2 \pi / L$ and use the Fourier transform at k_{n} divided by $\sqrt{2 \pi}$

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{L}} \sum_{n=-\infty}^{\infty} f_{n} e^{i k_{n} x}=\frac{2 \pi}{L} \sum_{n=-\infty}^{\infty} \frac{\tilde{f}\left(k_{n}\right)}{\sqrt{2 \pi}} e^{i k_{n} x} \tag{3.13}
\end{equation*}
$$

Going the other way, we set $\tilde{f}(k)=\sqrt{L / 2 \pi} f_{n}=\sqrt{L / 2 \pi} f_{[L k / 2 \pi]}$ and find

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} \tilde{f}(k) e^{i k x} \frac{d k}{\sqrt{2 \pi}}=\frac{L}{2 \pi} \int_{-\infty}^{\infty} \frac{f_{[L k / 2 \pi]}}{\sqrt{L}} e^{i k x} d k \tag{3.14}
\end{equation*}
$$

Example 3.1 (The Fourier Transform of a Gaussian Is a Gaussian) The Fourier transform of the gaussian $f(x)=\exp \left(-m^{2} x^{2}\right)$ is

$$
\begin{equation*}
\tilde{f}(k)=\int_{-\infty}^{\infty} \frac{d x}{\sqrt{2 \pi}} e^{-i k x} e^{-m^{2} x^{2}} \tag{3.15}
\end{equation*}
$$

We complete the square in the exponent:

$$
\begin{equation*}
\tilde{f}(k)=e^{-k^{2} / 4 m^{2}} \int_{-\infty}^{\infty} \frac{d x}{\sqrt{2 \pi}} e^{-m^{2}\left(x+i k / 2 m^{2}\right)^{2}} \tag{3.16}
\end{equation*}
$$

As we shall see in Sec. 5.14 when we study analytic functions, we may shift x to $x-i k / 2 m^{2}$, so the term $i k / 2 m^{2}$ in the exponential has no effect on the value of the x-integral.

$$
\begin{equation*}
\tilde{f}(k)=e^{-k^{2} / 4 m^{2}} \int_{-\infty}^{\infty} \frac{d x}{\sqrt{2 \pi}} e^{-m^{2} x^{2}}=\frac{1}{\sqrt{2} m} e^{-k^{2} / 4 m^{2}} \tag{3.17}
\end{equation*}
$$

Thus, the Fourier transform of a gaussian is another gaussian

$$
\begin{equation*}
\tilde{f}(k)=\int_{-\infty}^{\infty} \frac{d x}{\sqrt{2 \pi}} e^{-i k x} e^{-m^{2} x^{2}}=\frac{1}{\sqrt{2} m} e^{-k^{2} / 4 m^{2}} \tag{3.18}
\end{equation*}
$$

But the two gaussians are very different: if the gaussian $f(x)=\exp \left(-m^{2} x^{2}\right)$ decreases slowly as $x \rightarrow \infty$ because m is small (or quickly because m is big),

