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for the Dirac comb on SL.

2.13 Periodic Boundary Conditions

Periodic boundary conditions are often convenient. For instance, rather
than study an infinitely long one-dimensional system, we might study the
same system, but of length L. The ends cause e↵ects not present in the
infinite system. To avoid them, we imagine that the system forms a circle
and impose the periodic boundary condition

 (x± L, t) =  (x, t). (2.147)

In three dimensions, the analogous conditions are

 (x± L, y, z, t) =  (x, y, z, t)

 (x, y ± L, z, t) =  (x, y, z, t) (2.148)

 (x, y, z ± L, t) =  (x, y, z, t).

The eigenstates |pi of the free hamiltonian H = p2/2m have wave func-
tions

 
p

(x) = hx|pi = eix·p/~/(2⇡~)3/2. (2.149)

The periodic boundary conditions (2.148) require that each component pi
of momentum satisfy Lpi/~ = 2⇡ni or

p =
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L

=
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L
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where n is a vector of integers, which may be positive or negative or zero.
Periodic boundary conditions arise naturally in the study of solids. The

atoms of a perfect crystal are at the vertices of a Bravais lattice

xi = x
0

+
3X

i=1

niai (2.151)

in which the three vectors ai are the primitive vectors of the lattice and
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the ni are three integers. The hamiltonian of such an infinite crystal is
invariant under translations in space by

3X
i=1

niai. (2.152)

To keep the notation simple, let’s restrict ourselves to a cubic lattice
with lattice spacing a. Then since the momentum operator p generates
translations in space, the invariance of H under translations by an

exp(ian · p)H exp(�ian · p) = H (2.153)

implies that exp(ian · p) andH are compatible observables [exp(ian · p), H] =
0. As explained in section 1.30, it follows that we may choose the eigenstates
of H also to be eigenstates of p

eiap·n/~| i = eiak·n | i (2.154)

which implies that

 (x+ an, t) = eiak·n  (x, t). (2.155)

Setting

 (x) = eik·x u(x) (2.156)

we see that condition (2.155) implies that u(x) is periodic

u(x+ an) = u(x). (2.157)

For a general Bravais lattice, this Born–von Karman periodic boundary
condition is

u

 
x+

3X
i=1

niai, t

!
= u(x, t). (2.158)

Equations (2.155) and (2.157) are known as Bloch’s theorem.

Exercises

2.1 Show that sin!
1

x+ sin!
2

x is the same as (2.9).
2.2 Find the Fourier series for the function exp(ax) on the interval �⇡ <

x  ⇡.
2.3 Find the Fourier series for the function (x2�⇡2)2 on the same interval

(�⇡,⇡].
2.4 Find the Fourier series for the function (1+cosx) sin ax on the interval

(�⇡,⇡].


