Interchanging and rearranging, we have

$$
\begin{equation*}
f(x)=\int_{0}^{2 \pi}\left(\sum_{n=-\infty}^{\infty} \frac{e^{i n(x-y)}}{2 \pi}\right) f(y) d y . \tag{2.113}
\end{equation*}
$$

But $f(x)$ and the phases $e^{i n x}$ are periodic with period 2π, so we also have

$$
\begin{equation*}
f(x+2 \pi \ell)=\int_{0}^{2 \pi}\left(\sum_{n=-\infty}^{\infty} \frac{e^{i n(x-y)}}{2 \pi}\right) f(y) d y . \tag{2.114}
\end{equation*}
$$

Thus we arrive at the Dirac comb

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \frac{e^{i n(x-y)}}{2 \pi}=\sum_{\ell=-\infty}^{\infty} \delta(x-y-2 \pi \ell) \tag{2.115}
\end{equation*}
$$

or more simply

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \frac{e^{i n x}}{2 \pi}=\frac{1}{2 \pi}\left[1+2 \sum_{n=1}^{\infty} \cos (n x)\right]=\sum_{\ell=-\infty}^{\infty} \delta(x-2 \pi \ell) . \tag{2.116}
\end{equation*}
$$

Example 2.13 (Dirac's Comb) The sum of the first 100,000 terms of this cosine series (2.116) for the Dirac comb is plotted for the interval $(-15,15)$ in Fig. 2.11. Gibbs overshoots appear at the discontinuities. The integral of the first 100,000 terms from -15 to 15 is 5.0000 .

The stretched Dirac comb is

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \frac{e^{2 \pi i n(x-y) / L}}{L}=\sum_{\ell=-\infty}^{\infty} \delta(x-y-\ell L) \tag{2.117}
\end{equation*}
$$

Example 2.14 (Parseval's Identity) Using our formula (2.35) for the Fourier coefficients of a stretched interval, we can relate a sum of products $f_{n}^{*} g_{n}$ of the Fourier coefficients of the functions $f(x)$ and $g(x)$ to an integral of the product $f^{*}(x) g(x)$

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} f_{n}^{*} g_{n}=\sum_{n=-\infty}^{\infty} \int_{0}^{L} d x \frac{e^{i 2 \pi n x / L}}{\sqrt{L}} f^{*}(x) \int_{0}^{L} d y \frac{e^{-i 2 \pi n y / L}}{\sqrt{L}} g(y) . \tag{2.118}
\end{equation*}
$$

This sum contains Dirac's comb (2.117) and so

$$
\begin{align*}
\sum_{n=-\infty}^{\infty} f_{n}^{*} g_{n} & =\int_{0}^{L} d x \int_{0}^{L} d y f^{*}(x) g(y) \frac{1}{L} \sum_{n=-\infty}^{\infty} e^{i 2 \pi n(x-y) / L} \tag{2.119}\\
& =\int_{0}^{L} d x \int_{0}^{L} d y f^{*}(x) g(y) \sum_{\ell=-\infty}^{\infty} \delta(x-y-\ell L) .
\end{align*}
$$

