
98 Fourier Series

the coe�cients fn in the Fourier series
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They are proportional to 1/n in accord with (2.58)
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Figure 2.5 plots the square wave function  (x, 0) (2.80, straight solid lines)
and its 10-term (solid curve) and 100-term (dashes) Fourier series (2.82) for
an interval of length L = 2. Gibbs’s overshoot reaches 1.093 at x = 0.52 for
100 terms and 1.0898 at x = 0.502 for 1000 terms (not shown), amounting
to about 9% of the unit discontinuity at x = 1/2. A similar overshoot occurs
at x = 3/2.
How does  (x, 0) evolve with time? Since  n(x), the Fourier component

(2.77), is an eigenfunction of H with energy En, the time-evolution operator
U(t) = exp(�iHt/~) takes  (x, 0) into
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Because En = (n⇡~/L)2/2m, the wave function at time t is
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It is awkward to plot complex functions, so Fig. 2.6 displays the probability
distributions P (x, t) = | (x, t)|2 of the 1000-term Fourier series (2.86) for the
wave function  (x, t) at t = 0 (thick curve), t = 10�3 ⌧ (medium curve), and
⌧ = 2mL2/~ (thin curve). The discontinuities in the initial wave function
 (x, 0) cause both the Gibbs overshoots at x = 1/2 and x = 3/2 seen in the
series for  (x, 0) plotted in Fig. 2.5 and the choppiness of the probability
distribution P (x, t) exhibited in Fig.(2.6).

Example 2.11 (Time Evolution of a Continuous Function) What does
the Fourier series of a continuous function look like? How does it evolve


