Moreover if $f^{(k+1)}$ is piecewise continuous, then

$$
\begin{align*}
f_{n} & =\int_{-\pi}^{\pi}\left\{\frac{d}{d x}\left[f^{(k)}(x) \frac{e^{-i n x}}{-(i n)^{k+1}}\right]-f^{(k+1)}(x) \frac{e^{-i n x}}{-(i n)^{k+1}}\right\} d x \\
& =\int_{-\pi}^{\pi} f^{(k+1)}(x) \frac{e^{-i n x}}{(i n)^{k+1}} d x . \tag{2.55}
\end{align*}
$$

Since $f^{(k+1)}(x)$ is piecewise continuous on the closed interval $[-\pi, \pi]$, it is bounded there in absolute value by, let us say, M. So the Fourier coefficients of a C^{k} periodic function with $f^{(k+1)}$ piecewise continuous are bounded by

$$
\begin{equation*}
\left|f_{n}\right| \leq \frac{1}{n^{k+1}} \int_{-\pi}^{\pi}\left|f^{(k+1)}(x)\right| d x \leq \frac{2 \pi M}{n^{k+1}} \tag{2.56}
\end{equation*}
$$

We often can carry this derivation one step further. In most simple examples, the piecewise continuous periodic function $f^{(k+1)}(x)$ actually is piecewise continuously differentiable between its successive jumps at x_{j}. In this case, the derivative $f^{(k+2)}(x)$ is a piecewise continuous function plus a sum of a finite number of delta functions with finite coefficients. Thus we can integrate once more by parts. If for instance the function $f^{(k+1)}(x)$ jumps J times between $-\pi$ and π by $\Delta f_{j}^{(k+1)}$, then its Fourier coefficients are

$$
\begin{align*}
f_{n} & =\int_{-\pi}^{\pi} f^{(k+2)}(x) \frac{e^{-i n x}}{(i n)^{k+2}} d x \\
& =\sum_{j=1}^{J} \int_{x_{j}}^{x_{j+1}} f_{s}^{(k+2)}(x) \frac{e^{-i n x}}{(i n)^{k+2}} d x+\sum_{j=1}^{J} \Delta f_{j}^{(k+1)} \frac{e^{-i n x_{j}}}{(i n)^{k+2}} \tag{2.57}
\end{align*}
$$

in which the subscript s means that we've separated out the delta functions. The Fourier coefficients then are bounded by

$$
\begin{equation*}
\left|f_{n}\right| \leq \frac{2 \pi M}{n^{k+2}} \tag{2.58}
\end{equation*}
$$

in which M is related to the maximum absolute values of $f_{s}^{(k+2)}(x)$ and of the $\Delta f_{j}^{(k+1)}$. The Fourier series of periodic C^{k} functions converge very rapidly if k is big.

Example 2.6 (Fourier Series of a C^{0} Function) The function defined by

$$
f(x)= \begin{cases}0 & -\pi \leq x<0 \tag{2.59}\\ x & 0 \leq x<\pi / 2 \\ \pi-x & \pi / 2 \leq x \leq \pi\end{cases}
$$

is continuous on the interval $[-\pi, \pi]$ and its first derivative is piecewise

