Fourier Series

Moreover if $f^{(k+1)}$ is piecewise continuous, then

$$f_n = \int_{-\pi}^{\pi} \left\{ \frac{d}{dx} \left[f^{(k)}(x) \frac{e^{-inx}}{-(in)^{k+1}} \right] - f^{(k+1)}(x) \frac{e^{-inx}}{-(in)^{k+1}} \right\} dx$$

=
$$\int_{-\pi}^{\pi} f^{(k+1)}(x) \frac{e^{-inx}}{(in)^{k+1}} dx.$$
 (2.55)

Since $f^{(k+1)}(x)$ is piecewise continuous on the closed interval $[-\pi, \pi]$, it is bounded there in absolute value by, let us say, M. So the Fourier coefficients of a C^k periodic function with $f^{(k+1)}$ piecewise continuous are bounded by

$$|f_n| \le \frac{1}{n^{k+1}} \int_{-\pi}^{\pi} |f^{(k+1)}(x)| \ dx \le \frac{2\pi M}{n^{k+1}}.$$
 (2.56)

We often can carry this derivation one step further. In most simple examples, the piecewise continuous periodic function $f^{(k+1)}(x)$ actually is piecewise continuously differentiable between its successive jumps at x_j . In this case, the derivative $f^{(k+2)}(x)$ is a piecewise continuous function plus a sum of a finite number of delta functions with finite coefficients. Thus we can integrate once more by parts. If for instance the function $f^{(k+1)}(x)$ jumps J times between $-\pi$ and π by $\Delta f_j^{(k+1)}$, then its Fourier coefficients are

$$f_n = \int_{-\pi}^{\pi} f^{(k+2)}(x) \frac{e^{-inx}}{(in)^{k+2}} dx$$

= $\sum_{j=1}^{J} \int_{x_j}^{x_{j+1}} f_s^{(k+2)}(x) \frac{e^{-inx}}{(in)^{k+2}} dx + \sum_{j=1}^{J} \Delta f_j^{(k+1)} \frac{e^{-inx_j}}{(in)^{k+2}}$ (2.57)

in which the subscript s means that we've separated out the delta functions. The Fourier coefficients then are bounded by

$$|f_n| \le \frac{2\pi M}{n^{k+2}} \tag{2.58}$$

in which M is related to the maximum absolute values of $f_s^{(k+2)}(x)$ and of the $\Delta f_j^{(k+1)}$. The Fourier series of periodic C^k functions converge very rapidly if k is big.

Example 2.6 (Fourier Series of a C^0 Function) The function defined by

$$f(x) = \begin{cases} 0 & -\pi \le x < 0\\ x & 0 \le x < \pi/2\\ \pi - x & \pi/2 \le x \le \pi \end{cases}$$
(2.59)

is continuous on the interval $[-\pi,\pi]$ and its first derivative is piecewise

92