

Figure 2.3 The function x^{2} (solid) and its Fourier series of 7 terms (dot dash) and 20 terms (dashes). The Fourier series (2.30) for x^{2} quickly converges well inside the interval $(-\pi, \pi)$.
for the coefficients a_{n} and b_{n} also follow from the orthogonality relations

$$
\begin{align*}
& \int_{0}^{2 \pi} \sin m x \sin n x d x= \begin{cases}\pi & \text { if } n=m \neq 0 \\
0 & \text { otherwise }\end{cases} \tag{2.24}\\
& \int_{0}^{2 \pi} \cos m x \cos n x d x= \begin{cases}\pi & \text { if } n=m \neq 0 \\
2 \pi & \text { if } n=m=0 \\
0 & \text { otherwise, and }\end{cases} \tag{2.25}\\
& \int_{0}^{2 \pi} \sin m x \cos n x d x=0 \tag{2.26}
\end{align*}
$$

which hold for integer values of n and m.
What if a function $f(x)$ is not periodic? The Fourier series for an aperiodic function is itself strictly periodic, is sensitive to its interval $(r, r+2 \pi)$ of definition, may differ somewhat from the function near the ends of the interval, and usually differs markedly from it outside the interval.

Example 2.4 (The Fourier Series for x^{2}) The function x^{2} is even and so the integrals (2.23) for its sine Fourier coefficients b_{n} all vanish. Its cosine coefficients a_{n} are given by (2.22)

$$
\begin{equation*}
a_{n}=\int_{-\pi}^{\pi} \cos n x f(x) \frac{d x}{\pi}=\int_{-\pi}^{\pi} \cos n x x^{2} \frac{d x}{\pi} . \tag{2.27}
\end{equation*}
$$

Integrating twice by parts, we find for $n \neq 0$

$$
\begin{equation*}
a_{n}=-\frac{2}{n} \int_{-\pi}^{\pi} x \sin n x \frac{d x}{\pi}=-\int_{-\pi}^{\pi} \frac{2 \cos n x}{\pi n^{2}} d x+\left[\frac{2 x \cos n x}{\pi n^{2}}\right]_{-\pi}^{\pi}=(-1)^{n} \frac{4}{n^{2}} \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{0}=\int_{-\pi}^{\pi} x^{2} \frac{d x}{\pi}=\frac{2 \pi^{2}}{3} . \tag{2.29}
\end{equation*}
$$

Equation (2.20) now gives for x^{2} the cosine Fourier series

$$
\begin{equation*}
x^{2}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}} . \tag{2.30}
\end{equation*}
$$

This series rapidly converges within the interval $[-1,1]$ as shown in Fig. 2.3, but not near the endpoints $\pm \pi$.

Example 2.5 (The Gibbs Overshoot) The function $f(x)=x$ on the interval $[-\pi, \pi]$ is not periodic. So we expect trouble if we represent it as a Fourier series. Since x is an odd function, equation (2.22) tells us that the coefficients a_{n} all vanish. By (2.23), the b_{n} 's are

$$
\begin{equation*}
b_{n}=\int_{-\pi}^{\pi} \frac{d x}{\pi} x \sin n x=2(-1)^{n+1} \frac{1}{n} . \tag{2.31}
\end{equation*}
$$

As shown in Fig. 2.4, the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} 2(-1)^{n+1} \frac{1}{n} \sin n x \tag{2.32}
\end{equation*}
$$

differs by about 2π from the function $f(x)=x$ for $-3 \pi<x<-\pi$ and for $\pi<x<3 \pi$ because the series is periodic while the function x isn't.

Within the interval $(-\pi, \pi)$, the series with 100 terms is very accurate except for $x \gtrsim-\pi$ and $x \lesssim \pi$, where it overshoots by about 9% of the 2π discontinuity, a defect called the Gibbs phenomenon or the Gibbs overshoot (J. Willard Gibbs 1839-1903. Incidentally Gibbs's father helped defend the Africans of the schooner Amistad). Any time we use a Fourier series to represent an aperiodic function, a Gibbs phenomenon will occur near the endpoints of the interval.

Figure 2.4 (top) The Fourier series (2.32) for the function x (solid line) with 10 terms (dots) and 100 terms (solid curve) for $-2 \pi<x<2 \pi$. The Fourier series is periodic, but the function x is not. (bottom) The differences between x and the 10 -term (dots) and the 100 -term (solid curve) on $(-\pi, \pi)$ exhibit a Gibbs overshoot of about 9% at $x \gtrsim-\pi$ and at $x \lesssim \pi$.

2.5 Stretched Intervals

If the interval of periodicity is of length L instead of 2π, then we may use the phases $\exp (i 2 \pi n x / \sqrt{L})$ which are orthonormal on the interval $[0, L]$

$$
\begin{equation*}
\int_{0}^{L} d x\left(\frac{e^{i 2 \pi n x / L}}{\sqrt{L}}\right)^{*} \frac{e^{i 2 \pi m x / L}}{\sqrt{L}}=\delta_{n m} \tag{2.33}
\end{equation*}
$$

The Fourier series

$$
\begin{equation*}
f(x)=\sum_{n=-\infty}^{\infty} f_{n} \frac{e^{i 2 \pi n x / L}}{\sqrt{L}} \tag{2.34}
\end{equation*}
$$

