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Figure 2.3 The function x2 (solid) and its Fourier series of 7 terms (dot
dash) and 20 terms (dashes). The Fourier series (2.30) for x2 quickly con-
verges well inside the interval (�⇡,⇡).

for the coe�cients an and bn also follow from the orthogonality relationsZ 2⇡

0
sinmx sinnx dx =

⇢
⇡ if n = m 6= 0
0 otherwise,

(2.24)

Z 2⇡

0
cosmx cosnx dx =

8<:
⇡ if n = m 6= 0
2⇡ if n = m = 0
0 otherwise, and

(2.25)

Z 2⇡

0
sinmx cosnx dx = 0, (2.26)

which hold for integer values of n and m.
What if a function f(x) is not periodic? The Fourier series for an aperi-

odic function is itself strictly periodic, is sensitive to its interval (r, r + 2⇡)
of definition, may di↵er somewhat from the function near the ends of the
interval, and usually di↵ers markedly from it outside the interval.
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Example 2.4 (The Fourier Series for x2) The function x2 is even and so
the integrals (2.23) for its sine Fourier coe�cients bn all vanish. Its cosine
coe�cients an are given by (2.22)

an =

Z ⇡

�⇡
cosnx f(x)

dx

⇡
=

Z ⇡

�⇡
cosnxx2

dx

⇡
. (2.27)

Integrating twice by parts, we find for n 6= 0

an = � 2

n

Z ⇡

�⇡
x sinnx

dx

⇡
= �

Z ⇡

�⇡

2 cosnx

⇡n2
dx+


2x cosnx

⇡n2

�⇡
�⇡

= (�1)n
4

n2

(2.28)
and

a0 =

Z ⇡

�⇡
x2

dx

⇡
=

2⇡2

3
. (2.29)

Equation (2.20) now gives for x2 the cosine Fourier series

x2 =
a0
2

+
1X
n=1

an cosnx =
⇡2

3
+ 4

1X
n=1

(�1)n
cosnx

n2
. (2.30)

This series rapidly converges within the interval [�1, 1] as shown in Fig. 2.3,
but not near the endpoints ±⇡.

Example 2.5 (The Gibbs Overshoot) The function f(x) = x on the in-
terval [�⇡,⇡] is not periodic. So we expect trouble if we represent it as a
Fourier series. Since x is an odd function, equation (2.22) tells us that the
coe�cients an all vanish. By (2.23), the bn’s are

bn =

Z ⇡

�⇡

dx

⇡
x sinnx = 2 (�1)n+1 1

n
. (2.31)

As shown in Fig. 2.4, the series
1X
n=1

2 (�1)n+1 1

n
sinnx (2.32)

di↵ers by about 2⇡ from the function f(x) = x for �3⇡ < x < �⇡ and for
⇡ < x < 3⇡ because the series is periodic while the function x isn’t.
Within the interval (�⇡,⇡), the series with 100 terms is very accurate

except for x & �⇡ and x . ⇡, where it overshoots by about 9% of the
2⇡ discontinuity, a defect called the Gibbs phenomenon or the Gibbs
overshoot (J. Willard Gibbs 1839–1903. Incidentally Gibbs’s father helped
defend the Africans of the schooner Amistad). Any time we use a Fourier
series to represent an aperiodic function, a Gibbs phenomenon will occur
near the endpoints of the interval.
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Figure 2.4 (top) The Fourier series (2.32) for the function x (solid line)
with 10 terms (dots) and 100 terms (solid curve) for �2⇡ < x < 2⇡.
The Fourier series is periodic, but the function x is not. (bottom) The
di↵erences between x and the 10-term (dots) and the 100-term (solid curve)
on (�⇡,⇡) exhibit a Gibbs overshoot of about 9% at x & �⇡ and at x . ⇡.

2.5 Stretched Intervals

If the interval of periodicity is of length L instead of 2⇡, then we may use
the phases exp(i2⇡nx/

p
L) which are orthonormal on the interval [0, L]Z L

0
dx

 
ei2⇡nx/Lp

L

!⇤
ei2⇡mx/L

p
L

= �nm. (2.33)

The Fourier series

f(x) =
1X

n=�1
fn

ei2⇡nx/Lp
L

(2.34)


