

Figure 2.2 The 10 -term (dashes) Fourier series (2.17) for the function $\exp (-2|x|)$ on the interval $(-\pi, \pi)$ is plotted from -2π to 2π. All Fourier series are periodic, but the function $\exp (-2|x|)$ (solid) is not.
and (2.3) as

$$
\begin{equation*}
f(x)=\sum_{n=-\infty}^{\infty} d_{n} e^{i n x} \quad \text { and } \quad d_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d x e^{-i n x} f(x) \tag{2.12}
\end{equation*}
$$

One also may use the rules

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} c_{n} e^{i n x} \quad \text { and } \quad c_{n}=\int_{-\pi}^{\pi} f(x) e^{-i n x} d x \tag{2.13}
\end{equation*}
$$

Example 2.3 (Fourier Series for $\exp (-m|x|)$) Let's compute the Fourier series for the real function $f(x)=\exp (-m|x|)$ on the interval $(-\pi, \pi)$. Using Eq.(2.10) for the shifted interval and the 2π-placement convention (2.12),
we find for the coefficient d_{n}

$$
\begin{equation*}
d_{n}=\int_{-\pi}^{\pi} \frac{d x}{2 \pi} e^{-i n x} e^{-m|x|} \tag{2.14}
\end{equation*}
$$

which we may split into the two pieces

$$
\begin{equation*}
d_{n}=\int_{-\pi}^{0} \frac{d x}{2 \pi} e^{(m-i n) x}+\int_{0}^{\pi} \frac{d x}{2 \pi} e^{-(m+i n) x} \tag{2.15}
\end{equation*}
$$

After doing the integrals, we find

$$
\begin{equation*}
d_{n}=\frac{1}{\pi} \frac{m}{m^{2}+n^{2}}\left[1-(-1)^{n} e^{-\pi m}\right] . \tag{2.16}
\end{equation*}
$$

Here since m is real, $d_{n}=d_{n}^{*}$, but also $d_{n}=d_{-n}$. So the coefficients d_{n} satisfy the condition (2.7) that holds when the function $f(x)$ is real, $d_{n}=d_{-n}^{*}$. The Fourier series for $\exp (-m|x|)$ with d_{n} given by (2.16) is

$$
\begin{align*}
e^{-m|x|} & =\sum_{n=-\infty}^{\infty} d_{n} e^{i n x}=\sum_{n=-\infty}^{\infty} \frac{1}{\pi} \frac{m}{m^{2}+n^{2}}\left[1-(-1)^{n} e^{-\pi m}\right] e^{i n x} \tag{2.17}\\
& =\frac{\left(1-e^{-\pi m}\right)}{m \pi}+\sum_{n=1}^{\infty} \frac{2}{\pi} \frac{m}{m^{2}+n^{2}}\left[1-(-1)^{n} e^{-\pi m}\right] \cos (n x)
\end{align*}
$$

In Fig. 2.2, the 10 -term (dashes) Fourier series for $m=2$ is plotted from $x=-2 \pi$ to $x=2 \pi$. The function $\exp (-2|x|)$ itself is represented by a solid line. Although it is not periodic, its Fourier series is periodic with period 2π. The 10 -term Fourier series represents the function $\exp (-2|x|)$ quite well within the interval $[-\pi, \pi]$.

In what follows, we usually won't bother to use different letters to distinguish between the symmetric ($2.2 \& 2.3$) and asymmetric ($2.12 \& 2.13$) conventions on the placement of the 2π 's.

2.4 Real Fourier Series for Real Functions

The rules (2.1-2.3 and 2.10-2.13) for Fourier series are simple and apply to functions that are continuous and periodic - whether complex or real. If the function $f(x)$ is real, then by $(2.7) d_{-n}=d_{n}^{*}$, whence $d_{0}=d_{0}^{*}$, so d_{0} is

