Exercises

The eight states of the system $|t, u, v\rangle \equiv (a_1^{\dagger})^t (a_2^{\dagger})^u (a_3^{\dagger})^v |0, 0, 0\rangle$. We can represent them by eight 8-vectors each of which has seven 0's with a 1 in position 4t + 2u + v + 1. How big should the matrices that represent the creation and annihilation operators be? Write down the three matrices that represent the three creation operators.

- 1.38 Show that the Schwarz inner product (1.430) is degenerate because it can violate (1.79) for certain density operators and certain pairs of states.
- 1.39 Show that the Schwarz inner product (1.431) is degenerate because it can violate (1.79) for certain density operators and certain pairs of operators.
- 1.40 The coherent state $|\{\alpha_k\}\rangle$ is an eigenstate of the annihilation operator a_k with eigenvalue α_k for each mode k of the electromagnetic field, $a_k|\{\alpha_k\}\rangle = \alpha_k|\{\alpha_k\}\rangle$. The positive-frequency part $E_i^{(+)}(x)$ of the electric field is a linear combination of the annihilation operators

$$E_i^{(+)}(x) = \sum_k a_k \,\mathcal{E}_i^{(+)}(k) \,e^{i(kx-\omega t)}.$$
(1.453)

Show that $|\{\alpha_k\}\rangle$ is an eigenstate of $E_i^{(+)}(x)$ as in (1.442) and find its eigenvalue $\mathcal{E}_i(x)$.