L_{3} for a hydrogen atom without spin:

$$
\begin{align*}
H|n, \ell, m\rangle & =E_{n}|n, \ell, m\rangle \\
\boldsymbol{L}^{2}|n, \ell, m\rangle & =\hbar^{2} \ell(\ell+1)|n, \ell, m\rangle \\
L_{3}|n, \ell, m\rangle & =\hbar m|n, \ell, m\rangle . \tag{1.415}
\end{align*}
$$

Suppose the states $|\sigma\rangle$ for $\sigma= \pm$ are the eigenstates of the third component S_{3} of the operator \boldsymbol{S} that represents the spin of the electron

$$
\begin{equation*}
S_{3}|\sigma\rangle=\sigma \frac{\hbar}{2}|\sigma\rangle . \tag{1.416}
\end{equation*}
$$

Then the direct- or tensor-product states

$$
\begin{equation*}
|n, \ell, m, \sigma\rangle \equiv|n, \ell, m\rangle \otimes|\sigma\rangle \equiv|n, \ell, m\rangle|\sigma\rangle \tag{1.417}
\end{equation*}
$$

represent a hydrogen atom including the spin of its electron. They are eigenvectors of all four operators $H, \boldsymbol{L}^{2}, L_{3}$, and S_{3} :

$$
\begin{align*}
H|n, \ell, m, \sigma\rangle & =E_{n}|n, \ell, m, \sigma\rangle & L^{2}|n, \ell, m, \sigma\rangle & =\hbar^{2} \ell(\ell+1)|n, \ell, m, \sigma\rangle \\
L_{3}|n, \ell, m, \sigma\rangle & =\hbar m|n, \ell, m, \sigma\rangle & S_{3}|n, \ell, m, \sigma\rangle & =\sigma \frac{\hbar}{2}|n, \ell, m, \sigma\rangle . \tag{1.418}
\end{align*}
$$

Suitable linear combinations of these states are eigenvectors of the square \boldsymbol{J}^{2} of the composite angular momentum $\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}$ as well as of J_{3}, L_{3}, and S_{3}.

Example 1.51 (Adding Two Spins) The smallest positive value of angular momentum is $\hbar / 2$. The spin-one-half angular momentum operators \boldsymbol{S} are represented by three 2×2 matrices

$$
\begin{equation*}
S_{a}=\frac{\hbar}{2} \sigma_{a} \tag{1.419}
\end{equation*}
$$

in which the σ_{a} are the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{1.420}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \text { and } \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Consider two spin operators $\boldsymbol{S}^{(1)}$ and $\boldsymbol{S}^{(2)}$ acting on two spin-one-half systems. The states $| \pm\rangle_{1}$ are eigenstates of $S_{3}^{(1)}$, and the states $| \pm\rangle_{2}$ are eigenstates of $S_{3}^{(2)}$

$$
\begin{equation*}
S_{3}^{(1)}| \pm\rangle_{1}= \pm \frac{\hbar}{2}| \pm\rangle_{1} \quad \text { and } \quad S_{3}^{(2)}| \pm\rangle_{2}= \pm \frac{\hbar}{2}| \pm\rangle_{2} \tag{1.421}
\end{equation*}
$$

