Example 1.46 Suppose A is the 3×2 matrix

$$
A=\left(\begin{array}{ll}
r_{1} & p_{1} \tag{1.385}\\
r_{2} & p_{2} \\
r_{3} & p_{3}
\end{array}\right)
$$

and the vector $|y\rangle$ is the cross-product $|y\rangle=\boldsymbol{L}=\boldsymbol{r} \times \boldsymbol{p}$. Then no solution $|x\rangle$ exists to the equation $A|x\rangle=|y\rangle$ (unless \boldsymbol{r} and \boldsymbol{p} are parallel) because $A|x\rangle$ is a linear combination of the vectors \boldsymbol{r} and \boldsymbol{p} while $|y\rangle=\boldsymbol{L}$ is perpendicular to both \boldsymbol{r} and \boldsymbol{p}.

Even when the matrix A is square, the equation (1.381) sometimes has no solutions. For instance, if A is a square matrix that vanishes, $A=0$, then (1.381) has no solutions whenever $|y\rangle \neq 0$. And when $N>M$, as in for instance

$$
\left(\begin{array}{lll}
a & b & c \tag{1.386}\\
d & e & f
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{y_{1}}{y_{2}}
$$

the solution (1.384) is never unique, for we may add to it any linear combination of the vectors $|n\rangle$ that A annihilates for $M<n \leq N$

$$
\begin{equation*}
|x\rangle=\sum_{n=1}^{\min (M, N)} \frac{\left\langle m_{n} \mid y\right\rangle}{S_{n}}|n\rangle+\sum_{n=M+1}^{N} x_{n}|n\rangle . \tag{1.387}
\end{equation*}
$$

These are the vectors $|n\rangle$ for $M<n \leq N$ that A maps to zero since they do not occur in the sum (1.362) which stops at $n=\min (M, N)<N$.

Example 1.47 (The CKM Matrix) In the standard model, the mass matrices of the u, c, t and d, s, b quarks are 3×3 complex matrices M_{u} and M_{d} with singular-value decompositions $M_{u}=U_{u} \Sigma_{u} V_{u}^{\dagger}$ and $M_{d}=U_{d} \Sigma_{d} V_{d}^{\dagger}$ whose singular-values are the quark masses. The unitary CKM matrix $U_{u}^{\dagger} U_{d}$ (Cabibbo, Kobayashi, Maskawa) describes transitions among the quarks mediated by the $W^{ \pm}$gauge bosons. By redefining the quark fields, one may make the CKM matrix real, apart from a phase that violates charge-conjugation-parity ($C P$) symmetry.

The adjoint of a complex symmetric matrix M is its complex conjugate, $M^{\dagger}=M^{*}$. So by (1.351), its right singular vectors $|n\rangle$ are the eigenstates of $M^{*} M$

$$
\begin{equation*}
M^{*} M|n\rangle=S_{n}^{2}|n\rangle \tag{1.388}
\end{equation*}
$$

and by (1.366) its left singular vectors $\left|m_{n}\right\rangle$ are the eigenstates of $M M^{*}$

$$
\begin{equation*}
M M^{*}\left|m_{n}\right\rangle=\left(M^{*} M\right)^{*}\left|m_{n}\right\rangle=S_{n}^{2}\left|m_{n}\right\rangle . \tag{1.389}
\end{equation*}
$$

Thus its left singular vectors are the complex conjugates of its right singular vectors, $\left|m_{n}\right\rangle=|n\rangle^{*}$. So the unitary matrix V is the complex conjugate of the unitary matrix U, and the SVD of M is (Autonne, 1915)

$$
\begin{equation*}
M=U \Sigma U^{\top} . \tag{1.390}
\end{equation*}
$$

1.32 The Moore-Penrose Pseudoinverse

Although a matrix A has an inverse A^{-1} if and only if it is square and has a nonzero determinant, one may use the singular-value decomposition to make a pseudoinverse A^{+}for an arbitrary $M \times N$ matrix A. If the singular-value decomposition of the matrix A is

$$
\begin{equation*}
A=U \Sigma V^{\dagger} \tag{1.391}
\end{equation*}
$$

then the Moore-Penrose pseudoinverse (Eliakim H. Moore 1862-1932, Roger Penrose 1931-) is

$$
\begin{equation*}
A^{+}=V \Sigma^{+} U^{\dagger} \tag{1.392}
\end{equation*}
$$

in which Σ^{+}is the transpose of the matrix Σ with every nonzero entry replaced by its inverse (and the zeros left as they are). One may show that the pseudoinverse A^{+}satisfies the four relations

$$
\begin{array}{ccc}
A A^{+} A=A & \text { and } & A^{+} A A^{+}=A^{+} \\
\left(A A^{+}\right)^{\dagger}=A A^{+} & \text {and } & \left(A^{+} A\right)^{\dagger}=A^{+} A \tag{1.393}
\end{array}
$$

and that it is the only matrix that does so.
Suppose that all the singular values of the $M \times N$ matrix A are positive. In this case, if A has more rows than columns, so that $M>N$, then the product $A A^{+}$is the $N \times N$ identity matrix I_{N}

$$
\begin{equation*}
A^{+} A=V^{\dagger} \Sigma^{+} \Sigma V=V^{\dagger} I_{N} V=I_{N} \tag{1.394}
\end{equation*}
$$

and $A A^{+}$is an $M \times M$ matrix that is not the identity matrix I_{M}. If instead A has more columns than rows, so that $N>M$, then $A A^{+}$is the $M \times M$ identity matrix I_{M}

$$
\begin{equation*}
A A^{+}=U \Sigma \Sigma^{+} U^{\dagger}=U I_{M} U^{\dagger}=I_{M} \tag{1.395}
\end{equation*}
$$

but $A^{+} A$ is an $N \times N$ matrix that is not the identity matrix I_{N}. If the

