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The first (1.339) of these conditions implies that
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We satisfy the second condition (1.340) by choosing �
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so that
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Setting �
2

= 1/T , we define the temperature T so that ⇢ satisfies the third
condition (1.341). Its eigenvalue ⇢n then is
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exp(�En/kT )P
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. (1.344)

In terms of the inverse temperature � ⌘ 1/(kT ), the density operator is

⇢ =
e��H

Tr (e��H)
(1.345)

which is the Boltzmann distribution.

1.31 The Singular-Value Decomposition

Every complex M ⇥ N rectangular matrix A is the product of an M ⇥M
unitary matrix U , an M ⇥ N rectangular matrix ⌃ that is zero except on
its main diagonal which consists of A’s nonnegative singular values Sk, and
an N ⇥N unitary matrix V †

A = U ⌃V †. (1.346)

This singular-value decomposition is a key theorem of matrix algebra.
Suppose A is a linear operator that maps vectors in an N -dimensional

vector space VN into vectors in an M -dimensional vector space VM . The
spaces VN and VM will have infinitely many orthonormal bases {|n, ai 2 VN}
and {|m, bi 2 VM} labeled by continuous parameters a and b. Each pair of


